ﻻ يوجد ملخص باللغة العربية
In this paper we analyse the behaviour of a pile-up of vertically periodic walls of edge dislocations at an obstacle, represented by a locked dislocation wall. Starting from a continuum non-local energy $E_gamma$ modelling the interactions$-$at a typical length-scale of $1/gamma$$-$of the walls subjected to a constant shear stress, we derive a first-order approximation of the energy $E_gamma$ in powers of $1/gamma$ by $Gamma$-convergence, in the limit $gammatoinfty$. While the zero-order term in the expansion, the $Gamma$-limit of $E_gamma$, captures the `bulk profile of the density of dislocation walls in the pile-up domain, the first-order term in the expansion is a `boundary-layer energy that captures the profile of the density in the proximity of the lock. This study is a first step towards a rigorous understanding of the behaviour of dislocations at obstacles, defects, and grain boundaries.
We analyze a mathematical model of elastic dislocations with applications to geophysics, where by an elastic dislocation we mean an open, oriented Lipschitz surface in the interior of an elastic solid, across which there is a discontinuity of the dis
We study the weak boundary layer phenomenon of the Navier-Stokes equations in a 3D bounded domain with viscosity, $epsilon > 0$, under generalized Navier friction boundary conditions, in which we allow the friction coefficient to be a (1, 1) tensor o
We study boundary blow-up solutions of semilinear elliptic equations $Lu=u_+^p$ with $p>1$, or $Lu=e^{au}$ with $a>0$, where $L$ is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.
This paper studies the boundary behaviour at mechanical equilibrium at the ends of a finite interval of a class of systems of interacting particles with monotone decreasing repulsive force. Our setting covers pile-ups of dislocations, dislocation dip
A system of $n$ screw dislocations in an isotropic crystal undergoing antiplane shear is studied in the framework of linear elasticity. Imposing a suitable boundary condition for the strain, namely requesting the non-vanishing of its boundary integra