ترغب بنشر مسار تعليمي؟ اضغط هنا

Group-galaxy correlations in redshift space as a probe of the growth of structure

93   0   0.0 ( 0 )
 نشر من قبل Faizan Gohar Mohammad Mr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the use of the cross-correlation between galaxies and galaxy groups to measure redshift-space distortions (RSD) and thus probe the growth rate of cosmological structure. This is compared to the classical approach based on using galaxy auto-correlation. We make use of realistic simulated galaxy catalogues that have been constructed by populating simulated dark matter haloes with galaxies through halo occupation prescriptions. We adapt the classical RSD dispersion model to the case of the group-galaxy cross-correlation function and estimate the RSD parameter $beta$ by fitting both the full anisotropic correlation function $xi(r_p,pi)$ and its multipole moments. In addition, we define a modified version of the latter statistics by truncating the multipole moments to exclude strongly non-linear distortions at small transverse scales. We fit these three observable quantities in our set of simulated galaxy catalogues and estimate statistical and systematic errors on $beta$ for the case of galaxy-galaxy, group-group, and group-galaxy correlation functions. When ignoring off-diagonal elements of the covariance matrix in the fitting, the truncated multipole moments of the group-galaxy cross-correlation function provide the most accurate estimate, with systematic errors below 3% when fitting transverse scales larger than $10Mpc/h$. Including the full data covariance enlarges statistical errors but keep unchanged the level of systematic error. Although statistical errors are generally larger for groups, the use of group-galaxy cross-correlation can potentially allow the reduction of systematics while using simple linear or dispersion models.



قيم البحث

اقرأ أيضاً

Redshift-space distortions (RSD) offers an exciting opportunity to test the gravity on cosmological scales. In the presence of galaxy bias, however, the RSD measurement at large scales, where the linear theory prediction is safely applied, is known t o exhibit a degeneracy between the parameters of structure growth f and fluctuation amplitude sigma8, and one can only constrain the parameters in the form of fsigma8. In order to disentangle this degeneracy, in this paper, we go beyond the linear theory, and consider the model of RSD applicable to a weakly nonlinear regime. Based on the Fisher matrix analysis, we show explicitly that the degeneracy of the parameter fsigma8 can be broken, and sigma8 is separately estimated in the presence of galaxy bias. Performing further the Markov chain Monte Carlo analysis, we verify that our model correctly reproduces the fiducial values of fsigma8 and sigma8, with the statistical errors consistent with those estimated from the Fisher matrix analysis. We show that upcoming galaxy survey of the stage-IV class can unambiguously determine sigma8 at the precision down to 10% at higher redshifts even if we restrict the accessible scales to k<0.16h/Mpc
The main science driver for the coming generation of cosmological surveys is understanding dark energy which relies on testing General Relativity on the largest scales. Once we move beyond the simplest explanation for dark energy of a cosmological co nstant, the space of possible theories becomes both vast and extremely hard to compute realistic observables. A key discriminator of a cosmological constant, however, is that the growth of structure is scale-invariant on large scales. By carefully weighting observables derived from distributions of galaxies and a dipole pattern in their apparent sizes, we construct a null test which vanishes for any model of gravity or dark energy where the growth of structure is scale-independent. It relies only on very few assumptions about cosmology, and does not require any modelling of the growth of structure. We show that with a survey like DESI a scale-dependence of the order of 10-20 percent can be detected at 3 sigma with the null test, which will drop by a factor of 2 for a survey like the Square Kilometre Array. We also show that the null test is very insensitive to typical uncertainties in other cosmological parameters including massive neutrinos and scale-dependent bias, making this a key null test for dark energy.
We show that correlations between the phases of the galaxy density field in redshift space provide additional information about the growth rate of large-scale structure that is complementary to the power spectrum multipoles. In particular, we conside r the multipoles of the line correlation function (LCF), which correlates phases between three collinear points, and use the Fisher forecasting method to show that the LCF multipoles can break the degeneracy between the measurement of the growth rate of structure $f$ and the amplitude of perturbations $sigma_8$ that is present in the power spectrum multipoles at large scales. This leads to an improvement in the measurement of $f$ and $sigma_8$ by up to 220 per cent for $k_{rm max} = 0.15 , hmathrm{Mpc}^{-1}$ and up to 50 per cent for $k_{rm max} = 0.30 , hmathrm{Mpc}^{-1}$ at redshift $z=0.25$, with respect to power spectrum measurements alone for the upcoming generation of galaxy surveys like DESI and Euclid. The average improvements in the constraints on $f$ and $sigma_8$ for $k_{rm max} = 0.15 , hmathrm{Mpc}^{-1}$ are $sim 90$ per cent for the DESI BGS sample with mean redshift $overline{z}=0.25$, $sim 40$ per cent for the DESI ELG sample with $overline{z}=1.25$, and $sim 40$ per cent for the Euclid H$alpha$ galaxies with $overline{z}=1.3$. For $k_{rm max} = 0.30 , hmathrm{Mpc}^{-1}$, the average improvements are $sim 40$ per cent for the DESI BGS sample and $sim 20$ per cent for both the DESI ELG and Euclid H$alpha$ galaxies.
We present improved modelling of the redshift-space distortions of galaxy clustering that arise from peculiar velocities. We create mock galaxy catalogues in the framework of the halo model, using data from the Bolshoi project. These mock galaxy popu lations are inserted into the haloes with additional degrees of freedom that govern spatial and kinematical biases of the galaxy populations relative to the dark matter. We explore this generalised halo model with an MCMC algorithm, comparing the predictions to data from the Galaxy And Mass Assembly (GAMA) survey, and thus derive one of the first constraints on the detailed kinematic degrees of freedom for satellite galaxies within haloes. With this approach, the distortions of the redshift-space galaxy autocorrelations can be accounted for down to spatial separations close to 10 kpc, opening the prospect of improved RSD measurements of the perturbation growth rate by the inclusion of data from nonlinear scales.
We study a class of early dark energy (EDE) models, in which, unlike in standard dark energy models, a substantial amount of dark energy exists in the matter-dominated era. We self-consistently include dark energy perturbations, and show that these m odels may be successfully constrained using future observations of galaxy clusters, in particular the redshift abundance, and the Sunyaev-Zeldovich (SZ) power spectrum. We make predictions for EDE models, as well as LCDM for incoming X-ray (eROSITA) and microwave (South Pole Telescope) observations. We show that galaxy clusters mass function and the SZ power spectrum will put strong constraints both on the equation of state of de today and the redshift at which EDE transits to present-day LCDM like behavior for these models, thus providing complementary information to the geometric probes of dark energy. Not including perturbations in EDE models leads to those models being practically indistinguishable from LCDM. An MCMC analysis of future galaxy cluster surveys provides constraints for EDE parameters that are competitive with and complementary to background expansion observations such as supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا