ترغب بنشر مسار تعليمي؟ اضغط هنا

Variations of magnetic properties of UGa2 under pressure

65   0   0.0 ( 0 )
 نشر من قبل Jean-Christophe Griveau
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrical resistivity rho(T) of the 5f ferromagnet UGa2 was investigated for single-crystal samples as a function of pressure and magnetic field. The Curie temperature monotonously increases from T$_{C}$ = 124 K under quasi-hydrostatic pressure up to 154 K at p = 14.2 GPa, after which it turns down steeply and reaches T$_{C}$ = 147 K at p = 15.2 GPa. At 20 GPa the compound is already non-magnetic. This dramatic variation is compatible with exchange interactions mediated by the 5f hybridization with the non-f states. The external pressure first enhances the exchange coupling of the 5f moments, but eventually suppresses the order by washing out the 5f moments. Such a two-band model is adequate for the weakly delocalized 5f states. The spin-disorder resistivity, which produces very high rho-values (300 muOmega.cm) is gradually suppressed by the pressure. In the paramagnetic state, this leads to a crossover from initial negative to positive drho/dT.

قيم البحث

اقرأ أيضاً

We report the magnetic susceptibility and the magnetization under pressures up to 1.7GPa above the critical pressure, Pc ~ 1.5GPa, for H // a, b, c-axes in the novel spin triplet superconductor UTe2. The anisotropic magnetic susceptibility at low pre ssure with the easy magnetization a-axis changes to the quasi-isotropic behavior at high pressure, revealing a rapid suppression of the susceptibility for a-axis, and a gradual increase of the susceptibility for the b-axis. At 1.7GPa above Pc, magnetic anomalies are detected at T_MO ~ 3K and T_WMO ~ 10K. The former anomaly corresponds to long-range magnetic order, most likely antiferromagnetism, while the latter shows a broad anomaly, which is probably due to the development of short range order. The unusual decrease and increase of the susceptibility below T_WMO for H // a and b-axes, respectively, indicate the complex magnetic properties at low temperatures above Pc. This is related to the interplay between multiple fluctuations dominated by antiferromagnetism, ferroamgnetism, valence and Fermi surface instabilities.
$^{139}$La nuclear magnetic resonance (NMR) measurements under pressure ($p = 0-2.64$ GPa) have been carried out to investigate the static and dynamic magnetic properties of the itinerant ferromagnet LaCrGe$_3$. $^{139}$La-NMR spectra for all measure d pressures in the ferromagnetically ordered state show a large shift due to the internal field induction $|$$B_{rm int}$$|$ $sim$ 4 T at the La site produced by Cr ordered moments. The change in $B_{rm int}$ by less than 5% with $p$ up to 2.64~GPa indicates that the Cr 3$d$ moments are robust under pressure. The temperature dependence of NMR shift and $B_{rm int}$ suggest that the ferromagnetic order develops below $sim$ 50~K under higher pressures in a magnetic field of $sim$ 7.2 T. Based on the analysis of NMR data using the self-consistent-renormalization (SCR) theory, the spin fluctuations in the paramagnetic state well above $T_{rm C}$ are revealed to be three dimensional ferromagnetic throughout the measured $p$ region.
Through advanced experimental techniques on CrI$_{3}$ single crystals, we derive a previously not discussed pressure-temperature phase diagram. We find that $T_{c}$ increases to $sim$ 66,K with pressure up to $sim$ 3,GPa followed by a decrease to $si m$ 10,K at 21.2,GPa. The experimental results are reproduced by theoretical calculations based on density functional theory where electron-electron interactions are treated by a static on-site Hubbard U on Cr 3$d$ orbitals. The origin of the pressure induced reduction of the ordering temperature is associated with a decrease of the calculated bond angle, from 95$^{circ}$ at ambient pressure to $sim$ 85$^{circ}$ at 25,GPa. Above 22,GPa, the magnetically ordered state is essentially quenched, possibly driving the system to a Kitaev spin-liquid state at low temperature, thereby opening up the possibility of further exploration of long-range quantum entanglement between spins. The pressure-induced semiconductor-to-metal phase transition was revealed by high-pressure resistivity that is accompanied by a transition from a robust ferromagnetic state to gradually more dominating anti-ferromagnetic interactions and was consistent with theoretical modeling.
We report 29Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu2Si2 under pressure in the hidden order and paramagnetic phases. We find that the Knight shift decreases with applied pressure, consistent with previo us measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. This suppression persists under pressure, and the onset temperature is mildly enhanced.
We report a study of the low-temperature high-pressure phase diagram of the intermetallic compound PrCu$_2$, by means of molecular-field calculations and $^{63,65}$Cu nuclear-quadrupole-resonance (NQR) measurements under pressure. The pressure-induce d magnetically-ordered phase can be accounted for by considering the influence of the crystal electric field on the $4f$ electron orbitals of the Pr$^{3+}$ ions and by introducing a pressure-dependent exchange interaction between the corresponding local magnetic moments. Our experimental data suggest that the order in the induced antiferromagnetic phase is incommensurate. The role of magnetic fluctuations both at high and low pressures is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا