ﻻ يوجد ملخص باللغة العربية
The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earths inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earths electron density. The Earths chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earths matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject outer core models with large hydrogen content and thereby demonstrate the potential of this novel method. In the future, dedicated instruments could be capable of distinguishing between specific Earth composition models and thereby reshape our understanding of the inner Earth in previously unimagined ways.
Cosmic-ray interactions with the nuclei of the Earths atmosphere produce a flux of neutrinos in all directions with energies extending above the TeV scale. However, the Earth is not a fully transparent medium for neutrinos with energies above a few T
During the last few years a number of works have proposed that planetary harmonics regulate solar oscillations and the Earth climate. Herein I address some critiques. Detailed analysis of the data do support the planetary theory of solar and climate
We study neutrino oscillations in a medium of dark matter which generalizes the standard matter effect. A general formula is derived to describe the effect of various mediums and their mediators to neutrinos. Neutrinos and anti-neutrinos receive oppo
The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utili
The observation of Earth matter effects in the spectrum of neutrinos coming from a next galactic core-collapse supernova (CCSN) could, in principle, reveal if neutrino mass ordering is normal or inverted. One of the possible ways to identify the mass