ﻻ يوجد ملخص باللغة العربية
Outbursts in two classes of interacting binary systems, the symbiotic stars (SSs) and the cataclysmic variables (CVs), show a number of similarities in spite of very different orbital periods. Typical values for SSs are in the order of years, whereas for CVs they are of a few hours. Both systems undergo unpredictable outbursts, characterized by a brightening in the optical by 1 - 3 and 7 - 15 mag for SSs and CVs, respectively. By modelling the multiwavelength SED of selected examples from both groups of these interacting binaries, I determine their basic physical parameters at a given time of the outburst evolution. In this way I show that the principal difference between outbursts of these objects is their violence, whereas the ionization structure of their ejecta is basically very similar. This suggests that the mechanism of the mass ejection by the white dwarfs in these systems is also similar.
Accreting white dwarfs (WDs) constitute a significant fraction of the hard X-ray sources detected by the INTEGRAL observatory. Most of them are magnetic Cataclysmic Variables (CVs) of the intermediate polar (IP) and polar types, but the contribution
We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources, and systems with giant donor stars. Our approach inten
We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications
We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by Schreiber et al. (2016), who found that multiple tensions between the observed properties of cataclysmic variables
I review our current understanding of the evolution of cataclysmic variables (CVs). I first provide a brief introductory CV primer, in which I describe the physical structure of CVs, as well as their astrophysical significance. The main part of the r