ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum path integral molecular dynamics simulations on transport properties of dense liquid helium

92   0   0.0 ( 0 )
 نشر من قبل Jiayu Dai
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transport properties of dense liquid helium under the conditions of planets core and cool atmosphere of white dwarfs have been investigated by using the improved centroid path-integral simulations combined with density functional theory. The self-diffusion is largely higher and the shear viscosity is notably lower predicted with the quantum mechanical description of the nuclear motion compared with the description by Newton equation. The results show that nuclear quantum effects (NQEs), which depends on the temperature and density of the matter via the thermal de Broglie wavelength and the ionization of electrons, are essential for the transport properties of dense liquid helium at certain astrophysical conditions. The Stokes-Einstein relation between diffusion and viscosity in strongly coupled regime is also examined to display the influences of NQEs.


قيم البحث

اقرأ أيضاً

We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived on the fly from the electronic gro und state of density functional theory (DFT) and the corresponding analytical expression is used for the energy flux. In the other, the PES is represented by a deep neural network (DNN) trained on DFT data, whereby the PES has an explicit local decomposition and the energy flux takes a particularly simple expression. By virtue of a gauge invariance principle, established by Marcolongo, Umari, and Baroni, the two approaches should be equivalent if the PES were reproduced accurately by the DNN model. We test this hypothesis by calculating the thermal conductivity, at the GGA (PBE) level of theory, using the direct formulation and its DNN proxy, finding that both approaches yield the same conductivity, in excess of the experimental value by approximately 60%. Besides being numerically much more efficient than its direct DFT counterpart, the DNN scheme has the advantage of being easily applicable to more sophisticated DFT approximations, such as meta-GGA and hybrid functionals, for which it would be hard to derive analytically the expression of the energy flux. We find in this way, that a DNN model, trained on meta-GGA (SCAN) data, reduce the deviation from experiment of the predicted thermal conductivity by about 50%, leaving the question open as to whether the residual error is due to deficiencies of the functional, to a neglect of nuclear quantum effects in the atomic dynamics, or, likely, to a combination of the two.
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these deve lopments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high pressure water.
The cavity method is a well established technique for solving classical spin models on sparse random graphs (mean-field models with finite connectivity). Laumann et al. [arXiv:0706.4391] proposed recently an extension of this method to quantum spin-1 /2 models in a transverse field, using a discretized Suzuki-Trotter imaginary time formalism. Here we show how to take analytically the continuous imaginary time limit. Our main technical contribution is an explicit procedure to generate the spin trajectories in a path integral representation of the imaginary time dynamics. As a side result we also show how this procedure can be used in simple heat-bath like Monte Carlo simulations of generic quantum spin models. The replica symmetric continuous time quantum cavity method is formulated for a wide class of models, and applied as a simple example on the Bethe lattice ferromagnet in a transverse field. The results of the methods are confronted with various approximation schemes in this particular case. On this system we performed quantum Monte Carlo simulations that confirm the exactness of the cavity method in the thermodynamic limit.
Trapped Bosons exhibit fundamental physical phenomena and are potentially useful for quantum technologies. We present a method for simulating Bosons using path integral molecular dynamics. A main challenge for simulations is including all permutation s due to exchange symmetry. We show that evaluation of the potential can be done recursively, avoiding explicit enumeration of permutations, and scales cubically with system size. The method is applied to Bosons in a 2D trap and agrees with essentially exact results. An analysis of the role of exchange with decreasing temperature is also presented.
We develop and test a computational framework to study heat exchange in interacting, nonequilibrium open quantum systems. Our iterative full counting statistics path integral (iFCSPI) approach extends a previously well-established influence functiona l path integral method, by going beyond reduced system dynamics to provide the cumulant generating function of heat exchange. The method is straightforward; we implement it for the nonequilibrium spin boson model to calculate transient and long-time observables, focusing on the steady-state heat current flowing through the system under a temperature difference. Results are compared to perturbative treatments and demonstrate good agreement in the appropriate limits. The challenge of converging nonequilibrium quantities, currents and high order cumulants, is discussed in detail. The iFCSPI, a numerically exact technique, naturally captures strong system-bath coupling and non-Markovian effects of the environment. As such, it is a promising tool for probing fundamental questions in quantum transport and quantum thermodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا