ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT/UVES observations of extremely strong intervening damped Lyman-alpha systems: Molecular hydrogen and excited carbon, oxygen and silicon at log N(HI)=22.4

93   0   0.0 ( 0 )
 نشر من قبل Pasquier Noterdaeme
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed analysis of three extremely strong intervening DLAs (log N(HI)>=21.7) observed towards quasars with VLT/UVES. We measure overall metallicities of [Zn/H]~-1.2, -1.3 and -0.7 at respectively zabs=2.34 towards SDSS J2140-0321 (log N(HI) = 22.4+/-0.1), zabs=3.35 towards SDSS J1456+1609 (log N(HI) = 21.7+/-0.1) and zabs=2.25 towards SDSS J0154+1935 (log N(HI) = 21.75+/-0.15). We detect H2 towards J2140-0321 (log N(H2) = 20.13+/-0.07) and J1456+1609 (log N(H2) = 17.10+/-0.09) and argue for a tentative detection towards J0154+1935. Absorption from the excited fine-structure levels of OI, CI and SiII are detected in the system towards J2140-0321, that has the largest HI column density detected so far in an intervening DLA. This is the first detection of OI fine-structure lines in a QSO-DLA, that also provides us a rare possibility to study the chemical abundances of less abundant atoms like Co and Ge. Simple single phase photo-ionisation models fail to reproduce all the observed quantities. Instead, we suggest that the cloud has a stratified structure: H2 and CI likely originate from both a dense (log nH~2.5-3) cold (80K) and warm (250K) phase containing a fraction of the total HI while a warmer (T>1000 K) phase probably contributes significantly to the high excitation of OI fine-structure levels. The observed CI/H2 column density ratio is surprisingly low compared to model predictions and we do not detect CO molecules: this suggests a possible underabundance of C by 0.7 dex compared to other alpha elements. The absorber could be a photo-dissociation region close to a bright star (or a star cluster) where higher temperature occurs in the illuminated region. Direct detection of on-going star formation through e.g. NIR emission lines in the surrounding of the gas would enable a detailed physical modelling of the system.

قيم البحث

اقرأ أيضاً

We present a study of ~100 high redshift (z~2-4) extremely strong damped Lyman-alpha systems (ESDLA, with N(HI)>0.5x10^22 cm^-2) detected in quasar spectra from the Baryon Oscillation Spectroscopic Survey SDSS-III DR11. We study the neutral hydrogen, metal, and dust content of this elusive population of absorbers and confirm our previous finding that the high column density end of the N(HI) frequency distribution has a relatively shallow slope with power-law index -3.6, similar to what is seen from 21-cm maps in nearby galaxies. The stacked absorption spectrum indicates a typical metallicity ~1/20th solar, similar to the mean metallicity of the overall DLA population. The relatively small velocity extent of the low-ionisation lines suggests that ESDLAs do not arise from large-scale flows of neutral gas. The high column densities involved are in turn more similar to what is seen in DLAs associated with gamma-ray burst afterglows (GRB-DLAs), which are known to occur close to star forming regions. This indicates that ESDLAs arise from lines of sight passing at very small impact parameters from the host galaxy, as observed in nearby galaxies. This is also supported by simple theoretical considerations and recent high-z hydrodynamical simulations. We strongly substantiate this picture by the first statistical detection of Lya emission with <L>~(0.6+/-0.2)x10^42 erg/s in the core of ESDLAs (corresponding to about 0.1 L* at z~2-3), obtained through stacking the fibre spectra (of radius 1 corresponding to ~8 kpc at z~2.5). [truncated]
We have searched for molecular hydrogen in damped Lyman-alpha (DLA) and sub-DLA systems at z>1.8 using UVES at the VLT. Out of the 33 systems in our sample, 8 have firm and 2 have tentative detections of associated H2 absorption lines. Considering th at 3 detections were already known from past searches, H2 is detected in 13 to 20 percent of the newly-surveyed systems. We report new detections of molecular hydrogen at z=2.087 and 2.595 toward, respectively, Q 1444+014 and Q 0405-443, and also reanalyse the system at z=3.025 toward Q 0347-383. We find that there is a correlation between metallicity and depletion factor in both our sample and also the global population of DLA systems (60 systems in total). The DLA and sub-DLA systems where H2 is detected are usually amongst those having the highest metallicities and the largest depletion factors. Moreover, the individual components where H2 is detected have depletion factors systematically larger than other components in the profiles. In two different systems, one of the H2-detected components even has [Zn/Fe]>=1.4. These are the largest depletion factors ever seen in DLA systems. All this clearly demonstrates the presence of dust in a large fraction of the DLA systems. The mean H2 molecular fraction is generally small in DLA systems and similar to what is observed in the Magellanic Clouds. From 58 to 75 percent of the DLA systems have log f<-6. This can be explained if the formation rate of H2 onto dust grains is reduced in those systems, probably because the gas is warm (T>1000 K) and/or the ionizing flux is enhanced relative to what is observed in our Galaxy.
426 - Patrick Petitjean 2000
We report results from our mini-survey for molecular hydrogen in eight high redshift damped Lyman-alpha (DLA) systems using the ESO Ultra-violet and Visible Spectrograph on the VLT. In addition, we investigate two systems using ESO public data. We in clude in the sample the only system where H2 was previously detected and studied at high-spectral resolution. Altogether our sample consists of eleven absorbers with 1.85<z_abs<3.4. We confirm the presence of H2 in the z_abs = 2.3377, metal-poor ([Si/H] = -1.20) system toward PKS 1232+082. The derived molecular fraction, f = 2N(H2)/(2N(H2)+N(HI)) = 4 10-4, is two orders of magnitude less than what has been claimed previously from low-resolution data. The physical conditions within the cloud can be constrained directly from observation. The kinetic temperature and particle density are in the ranges, respectively, 100<T<300 K and 30<nH<50 cm-3. In addition, UV pumping is of the same order of magnitude than in our Galaxy. The upper limits on the molecular fraction derived in nine of the systems are in the range 1.2 10-7 - 1.6 10-5. The molecular abundance in a few DLA systems (and in particular in the two systems where H2 is detected) is consistent with what is seen in the Magellanic clouds. But most of the DLA measurements are well below these values. This is probably partly due to small amounts of dust and/or high UV flux. We argue however that the lack of molecules is a direct consequence of high kinetic temperature (T>3000 K) implying a low formation rate of H2 onto dust grains. Therefore, most of the DLA systems arise in warm and diffuse neutral gas. (Abridged)
We searched quasar spectra from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) for the rare occurrences where a strong damped Lyman-alpha absorber (DLA) blocks the Broad Line Region emission from the quasar and acts as a natural coronagr aph to reveal narrow Lyalpha emission from the host galaxy. We define a statistical sample of 31 DLAs in Data Release 9 (DR9) with log N(HI) > 21.3 cm^-2 located at less than 1500 km s^-1 from the quasar redshift. In 25% (8) of these DLAs, a strong narrow Lyalpha emission line is observed with flux ~25 x 10^-17 erg s^-1 cm^-2 on average. For DLAs without this feature in their troughs, the average 3-sigma upper limit is < 0.8 x 10^-17 erg s^-1 cm^-2. Our statistical sample is nearly 2.5 times larger than the anticipated number of intervening DLAs in DR9 within 1500 km s^-1 of the quasar redshift. We also define a sample of 26 DLAs from DR9 and DR10 with narrow Lyalpha emission detected and no limit on the HI column density to better characterize properties of the host galaxy emission. Analyzing the statistical sample, we do not find substantial differences in the kinematics, metals, or reddening for the two populations with and without emission detected. The highly symmetric narrow Lyalpha emission line profile centered in the HI trough indicates that the emitting region is separate from the absorber. The luminosity of the narrow Lyalpha emission peaks is intermediate between that of Lyman-alpha emitters and radio galaxies, implying that the Lyalpha emission is predominantly due to ionizing radiation from the AGN. Galaxies neighboring the quasar host are likely responsible for the majority (> 75%) of these DLAs, with only a minority (< 25%) arising from HI clouds located in the AGN host galaxy.
Using the GAEA semi-analytic model, we analyse the connection between Damped Lyman-$alpha$ systems (DLAs) and HI in galaxies. Our state-of-the-art semi-analytic model is tuned to reproduce the local galaxy HI mass function, and that also reproduces o ther important galaxy properties, including the galaxy mass - gas metallicity relation. To produce catalogs of simulated DLAs we throw $10^5$ random lines of sight in a composite simulated volume: dark matter haloes with log$(frac{M_{200}}{ M_{odot}}) geq 11.5$ are extracted from the Millennium Simulation, while for $9.2 leq log(frac{M_{200}}{ M_{odot}})<11.5$ we use the Millennium II, and for $8 leq log(frac{M_{200}}{M_{odot}}) < 9.2$ a halo occupation distribution model. At $2 < z < 3$, where observational data are more accurate, our fiducial model predicts the correct shape of the column density distribution function, but its normalization falls short of the observations, with the discrepancy increasing at higher redshift. The agreement with observations is significantly improved increasing both the HI masses and the disk radii of model galaxies by a factor 2, as implemented a posteriori in our $2M-2R$ model. In the redshift range of interest, haloes with $M_{200} geq {10}^{11} M_{odot}$ give the major contribution to $Omega_{rm DLA}$, and the typical DLA host halo mass is $sim {10}^{11} M _{odot}$. The simulated DLA metallicity distribution is in relatively good agreement with observations, but our model predicts an excess of DLAs at low metallicities. Our results suggest possible improvements for the adopted modelling of the filtering mass and metal ejection in low-mass haloes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا