ﻻ يوجد ملخص باللغة العربية
In this paper we present the Adaptive Optics Lucky Imager (AOLI), a state-of-the-art instrument which makes use of two well proved techniques for extremely high spatial resolution with ground-based telescopes: Lucky Imaging (LI) and Adaptive Optics (AO). AOLI comprises an AO system, including a low order non-linear curvature wavefront sensor together with a 241 actuators deformable mirror, a science array of four 1024x1024 EMCCDs, allowing a 120x120 down to 36x36 arcseconds field of view, a calibration subsystem and a powerful LI software. Thanks to the revolutionary WFS, AOLI shall have the capability of using faint reference stars ({it I/} $sim$ 16.5-17.5), enabling it to be used over a much wider part of the sky than with common Shack-Hartmann AO systems. This instrument saw first light in September 2013 at William Herschel Telescope. Although the instrument was not complete, these commissioning demonstrated its feasibility, obtaining a FWHM for the best PSF of 0.151$pm$0.005 arcsec and a plate scale of 55.0$pm$0.3 mas/pixel. Those observations served us to prove some characteristics of the interesting multiple T Tauri system LkH$alpha$ 262-263, finding it to be gravitationally bounded. This interesting multiple system mixes the presence of proto-planetary discs, one proved to be double, and the first-time optically resolved pair LkH$alpha$ 263AB (0.42 arcsec separation).
The highest resolution images ever taken in the visible were obtained by combining Lucky Imaging and low order adaptive optics. This paper describes a new instrument to be deployed on the WHT 4.2m and GTC 10.4 m telescopes on La Palma, with particula
We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plan
The potential of combining Adaptive Optics (AO) and Lucky Imaging (LI) to achieve high precision astrometry and differential photometry in the optical is investigated by conducting observations of the close 0farcs1 brown dwarf binary GJ569Bab. We too
AOLI (Adaptive Optics Lucky Imager) is a state-of-art instrument that combines adaptive optics (AO) and lucky imaging (LI) with the objective of obtaining diffraction limited images in visible wavelength at mid- and big-size ground-based telescopes.
The Gemini Planet Imager is a high-contrast near-infrared instrument specifically designed to image exoplanets and circumstellar disks over a narrow field of view. We use science data and AO telemetry taken during the first 1.5 yr of the GPI Exoplane