ﻻ يوجد ملخص باللغة العربية
Recently, a growing interest has been addressed to the electrical properties of bacteriorhodopsin (bR), a protein belonging to the transmembrane protein family. To take into account the structure-dependent nature of the current, in a previous set of papers we suggested a mechanism of sequential tunneling among neighbouring amino acids. As a matter of fact, it is well accepted that, when irradiated with green light, bR undergoes a conformational change at a molecular level. Thus, the role played by the protein tertiary-structure in modeling the charge transfer cannot be neglected. The aim of this paper is to go beyond previous models, in the framework of a new branch of electronics, we called proteotronics, which exploits the ability to use proteins as reliable, well understood materials, for the development of novel bioelectronic devices. In particular, the present approach assumes that the conformational change is not the unique transformation that the protein undergoes when irradiated by light. Instead, the light can also promote a free-energy increase of the protein state that, in turn, should modify its internal degree of connectivity, here described by the change in the value of an interaction radius associated with the physical interactions among amino acids. The implemented model enables us to achieve a better agreement between theory and experiments in the region of a low applied bias by preserving the level of agreement at high values of applied bias. Furthermore, results provide new insights on the mechanisms responsible for bR photoresponse.
In this short note, a correction is made to the recently proposed solution [1] to a 1D biased diffusion model for linear DNA translocation and a new analysis will be given to the data in [1]. It was pointed out [2] by us recently that this 1D linear
We report a theoretical study of DNA flexibility and quantitatively predict the ring closure probability as a function of DNA contour length. Recent experimental studies show that the flexibility of short DNA fragments (as compared to the persistence
A theoretical analysis of the unfolding pathway of simple modular proteins in length- controlled pulling experiments is put forward. Within this framework, we predict the first module to unfold in a chain of identical units, emphasizing the ranges of
Single molecule force spectroscopy of DNA strands adsorbed at surfaces is a powerful technique used in air or liquid environments to quantify their mechanical properties. Although the force responses are limited to unfolding events so far, single bas
We present a computational study on the folding and aggregation of proteins in aqueous environment, as function of its concentration. We show how the increase of the concentration of individual protein species can induce a partial unfolding of the na