ﻻ يوجد ملخص باللغة العربية
Motivated by the psychological literature on the peak-end rule for remembered experience, we perform an analysis within a random walk framework of a discrete choice model where agents future choices depend on the peak memory of their past experiences. In particular, we use this approach to investigate whether increased noise/disruption always leads to more switching between decisions. Here extreme value theory illuminates different classes of dynamics indicating that the long-time behaviour is dependent on the scale used for reflection; this could have implications, for example, in questionnaire design.
Random walks on discrete lattices are fundamental models that form the basis for our understanding of transport and diffusion processes. For a single random walker on complex networks, many properties such as the mean first passage time and cover tim
We consider random walkers that deform the medium as they move, enabling a faster motion in regions which have been recently visited. This induces an effective attraction between walkers mediated by the medium, which can be regarded as a space metric
We introduce a model of interacting Random Walk, whose hopping amplitude depends on the number of walkers/particles on the link. The mesoscopic counterpart of such a microscopic dynamics is a diffusing system whose diffusivity depends on the particle
We study the ordering statistics of 4 random walkers on the line, obtaining a much improved estimate for the long-time decay exponent of the probability that a particle leads to time $t$; $P_{rm lead}(t)sim t^{-0.91287850}$, and that a particle lags
We present a simple paradigm for detection of an immobile target by a space-time coupled random walker with a finite lifetime. The motion of the walker is characterized by linear displacements at a fixed speed and exponentially distributed duration,