ﻻ يوجد ملخص باللغة العربية
Extensive-form games constitute the standard representation scheme for games with a temporal component. But do all extensive-form games correspond to protocols that we can implement in the real world? We often rule out games with imperfect recall, which prescribe that an agent forget something that she knew before. In this paper, we show that even some games with perfect recall can be problematic to implement. Specifically, we show that if the agents have a sense of time passing (say, access to a clock), then some extensive-form games can no longer be implemented; no matter how we attempt to time the game, some information will leak to the agents that they are not supposed to have. We say such a game is not exactly timeable. We provide easy-to-check necessary and sufficient conditions for a game to be exactly timeable. Most of the technical depth of the paper concerns how to approximately time games, which we show can always be done, though it may require large amounts of time. Specifically, we show that for some games the time required to approximately implement the game grows as a power tower of height proportional to the number of players and with a parameter that measures the precision of the approximation at the top of the power tower. In practice, that makes the games untimeable. Besides the conceptual contribution to game theory, we believe our methodology can have applications to preventing information leakage in security protocols.
Counterfactual Regret Minimization (CFR) is an efficient no-regret learning algorithm for decision problems modeled as extensive games. CFRs regret bounds depend on the requirement of perfect recall: players always remember information that was revea
Tree-form sequential decision making (TFSDM) extends classical one-shot decision making by modeling tree-form interactions between an agent and a potentially adversarial environment. It captures the online decision-making problems that each player fa
Hindsight rationality is an approach to playing general-sum games that prescribes no-regret learning dynamics for individual agents with respect to a set of deviations, and further describes jointly rational behavior among multiple agents with mediat
Despite the many recent practical and theoretical breakthroughs in computational game theory, equilibrium finding in extensive-form team games remains a significant challenge. While NP-hard in the worst case, there are provably efficient algorithms f
Extensive games are tools largely used in economics to describe decision processes ofa community of agents. In this paper we propose a formal presentation based on theproof assistant COQ which focuses mostly on infinite extensive games and theirchara