ترغب بنشر مسار تعليمي؟ اضغط هنا

A $C^1$ virtual element method for the Cahn-Hilliard equation with polygonal meshes

115   0   0.0 ( 0 )
 نشر من قبل Marco Verani
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we develop an evolution of the $C^1$ virtual elements of minimal degree for the approximation of the Cahn-Hilliard equation. The proposed method has the advantage of being conforming in $H^2$ and making use of a very simple set of degrees of freedom, namely 3 degrees of freedom per vertex of the mesh. Moreover, although the present method is new also on triangles, it can make use of general polygonal meshes. As a theoretical and practical support, we prove the convergence of the semi-discrete scheme and investigate the performance of the fully discrete scheme through a set of numerical tests.



قيم البحث

اقرأ أيضاً

In this work we propose a discretisation method for the Reissner--Mindlin plate bending problem in primitive variables that supports general polygonal meshes and arbitrary order. The method is inspired by a two-dimensional discrete de Rham complex fo r which key commutation properties hold that enable the cancellation of the contribution to the error linked to the enforcement of the Kirchhoff constraint. Denoting by $kge 0$ the polynomial degree for the discrete spaces and by $h$ the meshsize, we derive for the proposed method an error estimate in $h^{k+1}$ for general $k$, as well as a locking-free error estimate for the lowest-order case $k=0$. The theoretical results are validated on a complete panel of numerical tests.
We present and analyze a new second-order finite difference scheme for the Macromolecular Microsphere Composite hydrogel, Time-Dependent Ginzburg-Landau (MMC-TDGL) equation, a Cahn-Hilliard equation with Flory-Huggins-deGennes energy potential. This numerical scheme with unconditional energy stability is based on the Backward Differentiation Formula (BDF) method time derivation combining with Douglas-Dupont regularization term. In addition, we present a point-wise bound of the numerical solution for the proposed scheme in the theoretical level. For the convergent analysis, we treat three nonlinear logarithmic terms as a whole and deal with all logarithmic terms directly by using the property that the nonlinear error inner product is always non-negative. Moreover, we present the detailed convergent analysis in $ell^infty (0,T; H_h^{-1}) cap ell^2 (0,T; H_h^1)$ norm. At last, we use the local Newton approximation and multigrid method to solve the nonlinear numerical scheme, and various numerical results are presented, including the numerical convergence test, positivity-preserving property test, spinodal decomposition, energy dissipation and mass conservation properties.
155 - B. Ayuso de Dios , , K. Lipnikov 2014
We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming V EM and the classical nonconforming finite element methods. We provide the error analysis and establish the equivalence with a family of mimetic finite difference methods.
In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We d erive optimal error estimate and present several numerical tests assessing the validity of the theoretical results.
We present a projection-based framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work we extend the fully implicit method presented in Khanwale et al. [{it A fully-coupled fram ework for solving Cahn-Hilliard Navier-Stokes equations: Second-order, energy-stable numerical methods on adaptive octree based meshes.}, arXiv:2009.06628 (2020)], to a block iterative hybrid method. We use a projection-based semi-implicit time discretization for the Navier-Stokes and a fully-implicit time discretization for the Cahn-Hilliard equation. We use a conforming continuous Galerkin (cG) finite element method in space equipped with a residual-based variational multiscale (RBVMS) formulation. Pressure is decoupled using a projection step, which results in two linear positive semi-definite systems for velocity and pressure, instead of the saddle point system of a pressure-stabilized method. All the linear systems are solved using an efficient and scalable algebraic multigrid (AMG) method. We deploy this approach on a massively parallel numerical implementation using parallel octree-based adaptive meshes. The overall approach allows the use of relatively large time steps with much faster time-to-solve. We present comprehensive numerical experiments showing detailed comparisons with results from the literature for canonical cases, including the single bubble rise and Rayleigh-Taylor instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا