تقليل تكلفة الحلول الحسابية هو القضية الرئيسية لحل مشكلات التعرف على الشقوق أو الانتشار الشقوق. واحدة من الحلول هي تجنب إعادة الشبكة للنطاق عند تغيير موضع الشق أو عند تمديد الشق. لتجنب إعادة الشبكة، نقترح طريقة العنصر المحدد الخيالي للمحاكاة الرقمية للانقسامات التي تنتجها الشقوق داخل الوسائل المرنة. يستند الأسلوب إلى طريقة النطاق الخيالي الأصلية التي تم تطويرها لشروط ديريشلت لمشكلة بوسون ولمشكلة ستوكس، والتي تم تكيفها مع شروط الحدود النويمان لمشكلات الشقوق. يمثل الشق بواسطة وظائف المستوى. وتم إجراء اختبارات رقمية باستخدام تركيب مختلط للتأكيد على دقة الأسلوب، فضلاً عن ثباته مع الهندسة التي تفرضها تقنية الاستقرار. وتم إثبات شرط التحقق من الأقل من الأعلى لذلك نظرياً. وتم إعطاء تجربة واقعية مع شقة مضغوطة متساوية في الداخل من بركان لإظهار قابلية الأسلوب للتطبيق.
Reduction of computational cost of solutions is a key issue to crack identification or crack propagation problems. One of the solution is to avoid re-meshing the domain when the crack position changes or when the crack extends. To avoid re-meshing, we propose a new finite element approach for the numerical simulation of discontinuities of displacements generated by cracks inside elastic media. The approach is based on a fictitious domain method originally developed for Dirichlet conditions for the Poisson problem and for the Stokes problem, which is adapted to the Neumann boundary conditions of crack problems. The crack is represented by level-set functions. Numerical tests are made with a mixed formulation to emphasize the accuracy of the method, as well as its robustness with respect to the geometry enforced by a stabilization technique. In particular an inf-sup condition is theoretically proven for the latter. A realistic simulation with a uniformly pressurized fracture inside a volcano is given for illustrating the applicability of the method.
In the present work, we propose to extend to the Stokes problem a fictitious domain approach inspired by eXtended Finite Element Method and studied for Poisson problem in [Renard]. The method allows computations in domains whose boundaries do not mat
In this work we develop a fictitious domain method for the Stokes problem which allows computations in domains whose boundaries do not depend on the mesh. The method is based on the ideas of Xfem and has been first introduced for the Poisson problem.
This study suggests a fast computational method for crack propagation, which is based on the extended finite element method (X-FEM). It is well known that the X-FEM might be the most popular numerical method for crack propagation. However, with the i
In this work we construct a low-order nonconforming approximation method for linear elasticity problems supporting general meshes and valid in two and three space dimensions. The method is obtained by hacking the Hybrid High-Order method, that requir
An interface/boundary-unfitted eXtended hybridizable discontinuous Galerkin (X-HDG) method of arbitrary order is proposed for linear elasticity interface problems on unfitted meshes with respect to the interface and domain boundary. The method uses p