ﻻ يوجد ملخص باللغة العربية
We employ ultra-broadband terahertz-midinfrared probe pulses to characterize the optical response of photoinduced charge-carrier plasmas in high-resistivity silicon in a reflection geometry, over a wide range of excitation densities (10^{15}-10^{19} cm^{-3}) at room temperature. In contrast to conventional terahertz spectroscopy studies, this enables one to directly cover the frequency range encompassing the resultant plasma frequencies. The intensity reflection spectra of the thermalized plasma, measured using sum-frequency (up-conversion) detection of the probe pulses, can be modeled well by a standard Drude model with a density-dependent momentum scattering time of approx. 200 fs at low densities, reaching approx. 20 fs for densities of approx. 10^{19} cm^{-3}, where the increase of the scattering rate saturates. This behavior can be reproduced well with theoretical results based on the generalized Drude approach for the electron-hole scattering rate, where the saturation occurs due to phase-space restrictions as the plasma becomes degenerate. We also study the initial sub-picosecond temporal development of the Drude response, and discuss the observed rise in the scattering time in terms of initial charge-carrier relaxation, as well as the optical response of the photoexcited sample as predicted by finite-difference time-domain simulations.
We report results from ultrafast two-color optical pump-probe spectroscopy on bulk $beta$-Ga$_2$O$_3$. A two-photon absorption scheme is used to photoexcite carriers with the pump pulse and free-carrier absorption of the probe pulse is used to record
From electrodeless time-resolved microwave conductivity measurements, the efficiency of charge carrier generation, their mobility, and decay kinetics on photo-excitation were studied in arrays of Si nanowires grown by the vapor-liquid-solid mechanism
We investigated the photoexcited carrier dynamics in Si by using optical pump and terahertz probe spectroscopy in an energy range between 2 meV and 25 meV. The formation dynamics of excitons from unbound e-h pairs was studied through the emergence of
We present a complementary experimental and theoretical investigation of relaxation dynamics in the charge-density-wave (CDW) system TbTe$_3$ after ultrafast optical excitation. Using time- and angle-resolved photoemission spectroscopy, we observe an
The optical conductivity of charge carriers coupled to quantum phonons is studied in the framework of the one-dimensional spinless Holstein model. For one electron, variational diagonalisation yields exact results in the thermodynamic limit, whereas