ﻻ يوجد ملخص باللغة العربية
We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point) from local singularity formation (neckpinch). Finally, we discuss the interpretation and implication of these results and future applications.
In this paper, we study the singularities of two extended Ricci flow systems --- connection Ricci flow and Ricci harmonic flow using newly-defined curvature quantities. Specifically, we give the definition of three types of singularities and their co
We verify a conjecture of Perelman, which states that there exists a canonical Ricci flow through singularities starting from an arbitrary compact Riemannian 3-manifold. Our main result is a uniqueness theorem for such flows, which, together with an
We consider a geometric flow introduced by Gigli and Mantegazza which, in the case of smooth compact manifolds with smooth metrics, is tangen- tial to the Ricci flow almost-everywhere along geodesics. To study spaces with geometric singularities, we
In this paper we apply techniques from optimal transport to study the neckpinch examples of Angenent-Knopf which arise through the Ricci flow on $mathbb{S}^{n+1}$. In particular, we recover their proof of single-point pinching along the flow. Using t
Associated to each finite dimensional linear representation of a group $G$, there is a vector bundle over the classifying space $BG$. We introduce a framework for studying this construction in the context of infinite discrete groups, taking into acco