ﻻ يوجد ملخص باللغة العربية
30% of the DNA in E. coli bacteria is covered by proteins. Such high degree of crowding affect the dynamics of generic biological processes (e.g. gene regulation, DNA repair, protein diffusion etc.) in ways that are not yet fully understood. In this paper, we theoretically address the diffusion constant of a tracer particle in a one dimensional system surrounded by impenetrable crowder particles. While the tracer particle always stays on the lattice, crowder particles may unbind to a surrounding bulk and rebind at another or the same location. In this scenario we determine how the long time diffusion constant ${cal D}$ (after many unbinding events) depends on (i) the unbinding rate of crowder particles $k_{rm off}$, and (ii) crowder particle line density $rho$, from simulations (Gillespie algorithm) and analytical calculations. For small $k_{rm off}$, we find ${cal D}sim k_{rm off}/rho^2$ when crowder particles are immobile on the line, and ${cal D}sim sqrt{D k_{rm off}}/rho$ when they are diffusing; $D$ is the free particle diffusion constant. For large $k_{rm off}$, we find agreement with mean-field results which do not depend on $k_{rm off}$. From literature values of $k_{rm off}$ and $D$, we show that the small $k_{rm off}$-limit is relevant for in vivo protein diffusion on a crowded DNA. Our results applies to single-molecule tracking experiments.
We study voltage driven translocation of a single stranded (ss) DNA through a membrane channel. Our model, based on a master equation (ME) approach, investigates the probability density function (pdf) of the translocation times, and shows that it can
We consider a non-interacting many-fermion system populating levels of a unitary random matrix ensemble (equivalent to the q=2 complex Sachdev-Ye-Kitaev model) - a generic model of single-particle quantum chaos. We study the corresponding many-partic
We demonstrate the phenomenon of cumulative inertia in intracellular transport involving multiple motor proteins in human epithelial cells by measuring the empirical survival probability of cargoes on the microtubule and their detachment rates. We fo
We present a theoretical model of facilitated diffusion of proteins in the cell nucleus. This model, which takes into account the successive binding/unbinding events of proteins to DNA, relies on a fractal description of the chromatin which has been
Diffusion of impenetrable particles in a crowded one-dimensional channel is referred as the single file diffusion. The particles do not pass each other and the displacement of each individual particle is sub-diffusive. We analyse a simple realization