ﻻ يوجد ملخص باللغة العربية
We construct, for the first time, Abelian-Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations.
The heat kernel expansion on even-dimensional hyperbolic spaces is asymptotic at both short and long times, with interestingly different Borel properties for these short and long time expansions. Resummations in terms of incomplete gamma functions pr
We apply the methods of homology and K-theory for branes wrapping spaces stratified fibered over hyperbolic orbifolds. In addition, we discuss the algebraic K-theory of any discrete co-compact Lie group in terms of appropriate homology and Atiyah-Hir
Using methods of formal geometry, the Poisson sigma model on a closed surface is studied in perturbation theory. The effective action, as a function on vacua, is shown to have no quantum corrections if the surface is a torus or if the Poisson structu
We compute the ${cal N}=2$ supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kahler form with jumps along the wal
We obtain classical string solutions on RxS^2 by applying the dressing method on string solutions with elliptic Pohlmeyer counterparts. This is realized through the use of the simplest possible dressing factor, which possesses just a pair of poles ly