ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupled-mode induced transparency in aerostatically-tuned microbubble whispering gallery resonators

133   0   0.0 ( 0 )
 نشر من قبل Yong Yang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coupled-mode induced transparency is realized in a single microbubble whispering gallery mode resonator. Using aerostatic tuning, we find that the pressure induced shifting rates are different for different radial order modes. A finite element simulation considering both the strain and stress effects shows a GHz/bar difference and this is confirmed by experiments. A transparency spectrum is obtained when a first order mode shifts across a higher order mode through precise pressure tuning. The resulting lineshapes are fitted with the theory. This work lays a foundation for future applications in microbubble sensing.



قيم البحث

اقرأ أيضاً

We report a theoretical study showing that rogue waves can emerge in whispering gallery mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagatio n of light in a whispering gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we evidence a range of parameters where rare and extreme events associated with a non-gaussian statistics of the field maxima are observed.
157 - J. T. Rubin , L. Deych 2011
In this paper we discuss the force exerted by the field of an optical cavity on a polarizable dipole. We show that the modification of the cavity modes due to interaction with the dipole significantly alters the properties of the force. In particular , all components of the force are found to be non-conservative, and cannot, therefore, be derived from a potential energy. We also suggest a simple generalization of the standard formulas for the optical force on the dipole, which reproduces the results of calculations based on the Maxwell stress tensor.
We introduce a microwave circuit architecture for quantum signal processing combining design principles borrowed from high-Q 3D resonators in the quantum regime and from planar structures fabricated with standard lithography. The resulting 2.5D whisp ering-gallery mode resonators store 98% of their energy in vacuum. We have measured internal quality factors above 3 million at the single photon level and have used the device as a materials characterization platform to place an upper bound on the surface resistance of thin film aluminum of less than 250nOhms.
We report the observation of stimulated Brillouin scattering and lasing at 1550~nm in barium fluoride (BaF$_2$) crystal. Brillouin lasing was achieved with ultra-high quality ($Q$) factor monolithic whispering gallery mode (WGM) mm-size disk resonato rs. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from $8.2$ GHz up to $49$ GHz have been generated through cascaded Brillouin lasing. BaF$_2$ resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.
136 - L. Deych , V. Shuvayev 2015
Nanoparticle-induced modifications of the spectrum of whispering-gallery-modes (WGM) of optical spheroidal resonators are studied theoretically. Combining an ab initio solution of a single resonator problem with a dipole approximation for the particl e, we derive simple analytical expressions for frequencies and widths of the particle-modified resonances, which are valid for resonators with moderate deviations from the spherical shape. The derived expressions are used to analyze spectral properties of the resonator-particle system as functions of the particles position, the size of the resonators and the characteristics of WGMs. The obtained results are shown to agree well with available experimental data. It is also demonstrated that the particle-induced spectral effects can be significantly enhanced by careful selection of resonators size, refractive index and other experimental parameters. The results presented in the paper can be useful for applications of WGM resonators in biosensing, cavity QED, optomechanics and others.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا