ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Keplerian dynamics in a disk around the post-AGB star AC Her

149   0   0.0 ( 0 )
 نشر من قبل Valentin Bujarrabal
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

So far, only one rotating disk has been clearly identified and studied in AGB or post-AGB objects (in the Red Rectangle), by means of observations with high spectral and spatial resolution. However, disks are thought to play a key role in the late stellar evolution and are suspected to surround many evolved stars. We aim to extend our knowledge on these structures. We present interferometric observations of CO J=2-1 emission from the nebula surrounding the post-AGB star AC Her, a source belonging to a class of objects that share properties with the Red Rectangle and show hints of Keplerian disks. We clearly detect the Keplerian dynamics of a second disk orbiting an evolved star. Its main properties (size, temperature, central mass) are derived from direct interpretation of the data and model fitting. With this we confirm that there are disks orbiting the stars of this relatively wide class of post-AGB objects



قيم البحث

اقرأ أيضاً

We present Atacama Large Millimeter/submillimeter Array (ALMA) line and continuum observations at 1.2mm with ~0.3 resolution that uncover a Keplerian-like disk around the forming O-type star AFGL 4176. The continuum emission from the disk at 1.21 mm (source mm1) has a deconvolved size of 870+/-110 AU x 330+/-300 AU and arises from a structure ~8 M_sun in mass, calculated assuming a dust temperature of 190 K. The first-moment maps, pixel-to-pixel line modeling, assuming local thermodynamic equilibrium (LTE), and position-velocity diagrams of the CH3CN J=13-12 K-line emission all show a velocity gradient along the major axis of the source, coupled with an increase in velocity at small radii, consistent with Keplerian-like rotation. The LTE line modeling shows that where CH3CN J=13-12 is excited, the temperatures in the disk range from ~70 to at least 300 K and that the H2 column density peaks at 2.8x10^24 cm^-2. In addition, we present Atacama Pathfinder Experiment (APEX) 12CO observations which show a large-scale outflow from AFGL 4176 perpendicular to the major axis of mm1, supporting the disk interpretation. Finally, we present a radiative transfer model of a Keplerian disk surrounding an O7 star, with a disk mass and radius of 12 M_sun and 2000 AU, that reproduces the line and continuum data, further supporting our conclusion that our observations have uncovered a Keplerian disk around an O-type star.
We study the sub-Keplerian rotation and dust content of the circumstellar material around the asymptotic giant branch (AGB) star L$_2$ Puppis. We find that the thermal pressure gradient alone cannot explain the observed rotation profile. We find that there is a family of possible dust populations for which radiation pressure can drive the observed sub-Keplerian rotation. This set of solutions is further constrained by the spectral energy distribution (SED) of the system, and we find that a dust-to-gas mass ratio of $sim10^{-3}$ and a maximum grain size that decreases radially outwards can satisfy both the rotation curve and SED. These dust populations are dynamically tightly coupled to the gas azimuthally. However grains larger than $sim0.5mu$m are driven outward radially by radiation pressure at velocities $sim5$kms$^{-1}$, which implies a dust replenishment rate of $sim3times10^{-9}$M$_odot$yr$^{-1}$. This replenishment rate is consistent with observational estimates to within uncertainties. Coupling between the radial motion of the dust and gas is weak and hence the gas does not share in this rapid outward motion. Overall we conclude that radiation pressure is a capable and necessary mechanism to explain the observed rotation profile of L$_2$ Pup, and offers other additional constraints on the dust properties.
We are studying a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of nebulae around evolved stars. We present ALMA maps of 12CO and 13CO J=3-2 lines in one of these sources, IRAS08544-4431. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 Mo, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of ~ 4 10^16 cm. The total nebular mass is ~ 2 10^-2 Mo, of which ~ 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of ~ 10000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other similar disks suggest that the size of the stellar orbits has significantly decreased as a consequence of disk formation.
110 - A. Raman 2005
We present Submillimeter Array observations of the Herbig Ae star HD169142 in 1.3 millimeter continuum emission and 12CO J=2-1 line emission at 1.5 arcsecond resolution that reveal a circumstellar disk. The continuum emission is centered on the star position and resolved, and provides a mass estimate of about 0.02 solar masses for the disk. The CO images show patterns in position and velocity that are well matched by a disk in Keplerian rotation with low inclination to the line-of-sight. We use radiative transfer calculations based on a flared, passive disk model to constrain the disk parameters by comparison to the spectral line emission. The derived disk radius is 235 AU, and the inclination is 13 degrees. The model also necessitates modest depletion of the CO molecules, similar to that found in Keplerian disks around T Tauri stars.
Context: Post-Asymptotic Giant Branch (AGB) binaries are surrounded by stable dusty and gaseous disks similar to the ones around young stellar objects. Whereas significant effort is spent on modeling observations of disks around young stellar objects , the disks around post-AGB binaries receive significantly less attention, even though they pose significant constraints on theories of disk physics and binary evolution. Aims: We want to examine the structure of and phenomena at play in circumbinary disks around post-AGB stars. We continue the analysis of our near-infrared interferometric image of the inner rim of the circumbinary disk around IRAS08544-4431. We want to understand the physics governing this inner disk rim. Methods: We use a radiative transfer model of a dusty disk to reproduce simultaneously the photometry as well as the near-infrared interferometric dataset on IRAS08544-4431. The model assumes hydrostatic equilibrium and takes dust settling self-consistently into account. Results: The best-fit radiative transfer model shows excellent agreement with the spectral energy distribution up to mm wavelengths as well as with the PIONIER visibility data. It requires a rounded inner rim structure, starting at a radius of 8.25 au. However, the model does not fully reproduce the detected over-resolved flux nor the azimuthal flux distribution of the inner rim. While the asymmetric inner disk rim structure is likely to be the consequence of disk-binary interactions, the origin of the additional over-resolved flux remains unclear. Conclusions: As in young stellar objects, the disk inner rim of IRAS08544-4431 is ruled by dust sublimation physics. Additional observations are needed to understand the origin of the extended flux and the azimuthal perturbation at the inner rim of the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا