ﻻ يوجد ملخص باللغة العربية
A Doppler broadening thermometry (DBT) instrument is built based on cavity ring-down spectroscopy (CRDS) for precise determination of the Boltzmann constant. Compared with conventional direct absorption methods, the high-sensitivity of CRDS allows to reach a satisfied precision at lower sample pressures, which also reduces the influence due to collisions. By recording the spectrum of C$_2$H$_2$ at 787 nm, we demonstrate a statistical uncertainty of 6 ppm (part per million) in the determined linewidth values by several hours measurement at a sample pressure of 1.5 Pa. The influence on the spectroscopy-determined temperatures has been investigated, including the hidden weak lines overlapped with the selected transition for DBT measurements. The reproducibility has also been examined to be better than 10 ppm, and it indicates that the instrument is feasible for DBT measurement toward a precision at the ppm level.
Cavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectr
We present a new cavity-based polarimetric scheme for highly sensitive and time-resolved measurements of birefringence and dichroism, linear and circular, that employs rapidly-pulsed single-frequency CW laser sources and extends current cavity-based
Doppler broadening in thermal ensembles degrades the absorption cross-section and the coherence time of collective excitations. In two photon transitions, it is common to assume that this problem becomes worse with larger wavelength mismatch. Here we
We propose and demonstrate a scheme to enable Doppler compensation within optical cavities for atom interferometry at significantly increased mode diameters. This has the potential to overcome the primary limitations in cavity enhancement for atom in
Rotationally resolved spectra of the C$^2Sigma^+$-X$^2Pi$ electronic system of the CH radical were measured using cavity ring-down spectroscopy in supersonically expanding, planar hydrocarbon plasma. The experimental conditions allowed the study of h