ﻻ يوجد ملخص باللغة العربية
U-duality symmetry of M-theory and S and T-duality of string theory can be used to study various black branes solutions. We explore some aspect of this idea here. This symmetry can be used to get relations among various components of the metric of the black brane. These relations in turn give relations among various components of the energy-momentum tensor. We show that, using these relations, without knowing the explicit form of form fields, we can get the black brane solutions. These features were studied previously in the context of M-theory. Here we extensively studied them in string theory (type II supergravity). We also show that this formulation works for exotic branes. We give an example of a time-dependent system where this method is essential.
We apply the duality transformation relating the heterotic to the IIA string in 6D to the class of exact string solutions described by the chiral null model and derive explicit formulas for all fields after reduction to 4D. If the model is restricted
We review the boundary state description of D-branes in type I string theory and show that the only stable non-BPS configurations are the D-particle and the D-instanton. We also compute the gauge and gravitational interactions of the non-BPS D-partic
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional U(1)^3-supergravity which is regular on and outside an event horizon of lens space topology L(2,1). The solution has seven independent parameters and uplift
We use the boundary state formalism to study, from the closed string point of view, superpositions of branes and anti-branes which are relevant in some non-perturbative string dualities. Treating the tachyon instability of these systems as proposed b
We construct zero-temperature solutions of supergravity theories in five and four dimensions which interpolate between two copies of anti-de Sitter space, one of which preserves an abelian gauge symmetry while the other breaks it. These domain wall s