ﻻ يوجد ملخص باللغة العربية
This note aims at demonstrating the advantage of moving-water well-balanced schemes over still-water well-balanced schemes for the shallow water equations. We concentrate on numerical examples with solutions near a moving-water equilibrium. For such examples, still-water well-balanced methods are not capable of capturing the small perturbations of the moving-water equilibrium and may generate significant spurious oscillations, unless an extremely refined mesh is used. On the other hand, moving- water well-balanced methods perform well in these tests. The numerical examples in this note clearly demonstrate the importance of utilizing moving-water well-balanced methods for solutions near a moving-water equilibrium.
In this paper, we develop a well-balanced oscillation-free discontinuous Galerkin (OFDG) method for solving the shallow water equations with a non-flat bottom topography. One notable feature of the constructed scheme is the well-balanced property, wh
In this paper, high order semi-implicit well-balanced and asymptotic preserving finite difference WENO schemes are proposed for the shallow water equations with a non-flat bottom topography. We consider the Froude number ranging from O(1) to 0, which
We develop well-balanced central schemes on overlapping cells for the Saint-Venant shallow water system and its variants. The main challenge in deriving the schemes is related to the fact that the Saint-Venant system contains a geometric source term
We describe a compatible finite element discretisation for the shallow water equations on the rotating sphere, concentrating on integrating consistent upwind stabilisation into the framework. Although the prognostic variables are velocity and layer d
Because of their capability to preserve steady-states, well-balanced schemes for Shallow Water equations are becoming popular. Among them, the hydrostatic reconstruction proposed in Audusse et al. (2004), coupled with a positive numerical flux, allow