ﻻ يوجد ملخص باللغة العربية
We consider optimization problems for cost functionals which depend on the negative spectrum of Schrodinger operators of the form $-Delta+V(x)$, where $V$ is a potential, with prescribed compact support, which has to be determined. Under suitable assumptions the existence of an optimal potential is shown. This can be applied to interesting cases such as costs functions involving finitely many negative eigenvalues.
The compression of the resolvent of a non-self-adjoint Schrodinger operator $-Delta+V$ onto a subdomain $Omegasubsetmathbb R^n$ is expressed in a Krein-Naimark type formula, where the Dirichlet realization on $Omega$, the Dirichlet-to-Neumann maps, a
In this paper we prove the existence of complete, noncompact convex hypersurfaces whose $p$-curvature function is prescribed on a domain in the unit sphere. This problem is related to the solvability of Monge-Amp`ere type equations subject to certain
We give a uniform description of resolvents and complex powers of elliptic semiclassical cone differential operators as the semiclassical parameter $h$ tends to $0$. An example of such an operator is the shifted semiclassical Laplacian $h^2Delta_g+1$
We prove global weighted Strichartz estimates for radial solutions of linear Schrodinger equation on a class of rotationally symmetric noncompact manifolds, generalizing the known results on hyperbolic and Damek-Ricci spaces. This yields classical St
We obtain the maximal regularity for the mixed Dirichlet-conormal problem in cylindrical domains with time-dependent separations, which is the first of its kind. The boundary of the domain is assumed to be Reifenberg-flat and the separation is locall