ترغب بنشر مسار تعليمي؟ اضغط هنا

The power of low-resolution spectroscopy: On the spectral classification of planet candidates in the ground-based CoRoT follow-up

60   0   0.0 ( 0 )
 نشر من قبل Matthias Ammler-von Eiff
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Planetary transits detected by the CoRoT mission can be mimicked by a low-mass star in orbit around a giant star. Spectral classification helps to identify the giant stars and also early-type stars which are often excluded from further follow-up. We study the potential and the limitations of low-resolution spectroscopy to improve the photometric spectral types of CoRoT candidates. In particular, we want to study the influence of the signal-to-noise ratio (SNR) of the target spectrum in a quantitative way. We built an own template library and investigate whether a template library from the literature is able to reproduce the classifications. Including previous photometric estimates, we show how the additional spectroscopic information improves the constraints on spectral type. Low-resolution spectroscopy ($Rapprox$1000) of 42 CoRoT targets covering a wide range in SNR (1-437) and of 149 templates was obtained in 2012-2013 with the Nasmyth spectrograph at the Tautenburg 2m telescope. Spectral types have been derived automatically by comparing with the observed template spectra. The classification has been repeated with the external CFLIB library. The spectral class obtained with the external library agrees within a few sub-classes when the target spectrum has a SNR of about 100 at least. While the photometric spectral type can deviate by an entire spectral class, the photometric luminosity classification is as close as a spectroscopic classification with the external library. A low SNR of the target spectrum limits the attainable accuracy of classification more strongly than the use of external templates or photometry. Furthermore we found that low-resolution reconnaissance spectroscopy ensures that good planet candidates are kept that would otherwise be discarded based on photometric spectral type alone.

قيم البحث

اقرأ أيضاً

We present precision 4.5 $mu$m Spitzer transit photometry of eight planet candidates discovered by the K2 mission: K2-52 b, K2-53 b, EPIC 205084841.01, K2-289 b, K2-174 b, K2-87 b, K2-90 b, and K2-124 b. The sample includes four sub-Neptunes and two sub-Saturns, with radii between 2.6 and 18 $R_oplus$, and equilibrium temperatures between 440 and 2000 K. In this paper we identify several targets of potential interest for future characterization studies, demonstrate the utility of transit follow-up observations for planet validation and ephemeris refinement, and present new imaging and spectroscopy data. Our simultaneous analysis of the K2 and Spitzer light curves yields improved estimates of the planet radii, and multi-wavelength information which help validate their planetary nature, including the previously un-validated candidate EPIC 205686202.01 (K2-289 b). Our Spitzer observations yield an order of magnitude increase in ephemeris precision, thus paving the way for efficient future study of these interesting systems by reducing the typical transit timing uncertainty in mid-2021 from several hours to a dozen or so minutes. K2-53 b, K2-289 b, K2-174 b, K2-87 b, and K2-90 b are promising radial velocity (RV) targets given the performance of spectrographs available today or in development, and the M3V star K2-124 hosts a temperate sub-Neptune that is potentially a good target for both RV and atmospheric characterization studies.
481 - K. Uytterhoeven 2008
To optimise the science results of the asteroseismic part of the CoRoT satellite mission a complementary simultaneous ground-based observational campaign is organised for selected CoRoT targets. The observations include both high-resolution spectrosc opic and multi-colour photometric data. We present the preliminary results of the analysis of the ground-based observations of three targets. A line-profile analysis of 216 high-resolution FEROS spectra of the delta Sct star HD 50844 reveals more than ten pulsation frequencies in the frequency range 5-18 c/d, including possibly one radial fundamental mode (6.92 c/d). Based on more than 600 multi-colour photometric datapoints of the beta Cep star HD180642, spanning about three years and obtained with different telescopes and different instruments, we confirm the presence of a dominant radial mode nu1=5.48695 c/d, and detect also its first two harmonics. We find evidence for a second mode nu2=0.3017 c/d, possibly a g-mode, and indications for two more frequencies in the 7-8 c/d domain. From Stromgren photometry we find evidence for the hybrid delta Sct/gamma Dor character of the F0 star HD 44195, as frequencies near 3 c/d and 21 c/d are detected simultaneously in the different filters.
We present the results of a 3-year long, medium-resolution spectroscopic campaign aimed at identifying very metal-poor stars from candidates selected with the CaHK, metallicity-sensitive Pristine survey. The catalogue consists of a total of 1007 star s, and includes 146 rediscoveries of metal-poor stars already presented in previous surveys, 707 new very metal-poor stars with [Fe/H] < -2.0, and 95 new extremely metal-poor stars with [Fe/H] < -3.0. We provide a spectroscopic [Fe/H] for every star in the catalogue, and [C/Fe] measurements for a subset of the stars (10% with [Fe/H] < -3 and 24% with -3 < [Fe/H] < -2) for which a carbon determination is possible, contingent mainly on the carbon abundance, effective temperature and S/N of the stellar spectra. We find an average carbon enhancement fraction ([C/Fe] >= +0.7) of 41 +- 4% for stars with -3 < [Fe/H] < -2 and 58 +- 14% for stars with [Fe/H] < -3, and report updated success rates for the Pristine survey of 56 % and 23 % to recover stars with [Fe/H] < -2.5 and [Fe/H] < -3, respectively. Finally, we discuss the current status of the survey and its preparation for providing targets to upcoming multi-object spectroscopic surveys such as WEAVE.
We present results from an observing campaign to identify low-metallicity stars in the Best & Brightest Survey. From medium-resolution (R ~ 1, 200 - 2, 000) spectroscopy of 857 candidates, we estimate the stellar atmospheric parameters (Teff, log g, and [Fe/H]), as well as carbon and alpha-element abundances. We find that 69% of the observed stars have [Fe/H] <= -1.0, 39% have [Fe/H] <= -2.0, and 2% have [Fe/H] <= -3.0. There are also 133 carbon-enhanced metal-poor (CEMP) stars in this sample, with 97 CEMP Group I and 36 CEMP Group II stars identified in the A(C) versus [Fe/H] diagram. A subset of the confirmed low-metallicity stars were followed-up with high-resolution spectroscopy, as part of the R-process Alliance, with the goal of identifying new highly and moderately r-process-enhanced stars. Comparison between the stellar atmospheric parameters estimated in this work and from high-resolution spectroscopy exhibit good agreement, confirming our expectation that medium-resolution observing campaigns are an effective way of selecting interesting stars for further, more targeted, efforts.
We present different aspects of the ground-based observational counterpart of the CoRoT satellite mission. We give an overview of the selected asteroseismic targets, the numerous instruments and observatories involved, and the first scientific results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا