ﻻ يوجد ملخص باللغة العربية
We introduce natural strategic games on graphs, which capture the idea of coordination in a local setting. We study the existence of equilibria that are resilient to coalitional deviations of unbounded and bounded size (i.e., strong equilibria and k-equilibria respectively). We show that pure Nash equilibria and 2-equilibria exist, and give an example in which no 3-equilibrium exists. Moreover, we prove that strong equilibria exist for various special cases. We also study the price of anarchy (PoA) and price of stability (PoS) for these solution concepts. We show that the PoS for strong equilibria is 1 in almost all of the special cases for which we have proven strong equilibria to exist. The PoA for pure Nash equilbria turns out to be unbounded, even when we fix the graph on which the coordination game is to be played. For the PoA for k-equilibria, we show that the price of anarchy is between 2(n-1)/(k-1) - 1 and 2(n-1)/(k-1). The latter upper bound is tight for $k=n$ (i.e., strong equilibria). Finally, we consider the problems of computing strong equilibria and of determining whether a joint strategy is a k-equilibrium or strong equilibrium. We prove that, given a coordination game, a joint strategy s, and a number k as input, it is co-NP complete to determine whether s is a k-equilibrium. On the positive side, we give polynomial time algorithms to compute strong equilibria for various special cases.
We study natural strategic games on directed graphs, which capture the idea of coordination in the absence of globally common strategies. We show that these games do not need to have a pure Nash equilibrium and that the problem of determining their e
We study strategic games on weighted directed graphs, in which the payoff of a player is defined as the sum of the weights on the edges from players who chose the same strategy, augmented by a fixed non-negative integer bonus for picking a given stra
We study strategic games on weighted directed graphs, where the payoff of a player is defined as the sum of the weights on the edges from players who chose the same strategy augmented by a fixed non-negative bonus for picking a given strategy. These
We consider polymatrix coordination games with individual preferences where every player corresponds to a node in a graph who plays with each neighbor a separate bimatrix game with non-negative symmetric payoffs. In this paper, we study $alpha$-appro
We study a class of games, in which the adversary (attacker) is to satisfy a complex mission specified in linear temporal logic, and the defender is to prevent the adversary from achieving its goal. A deceptive defender can allocate decoys, in additi