ﻻ يوجد ملخص باللغة العربية
The non-Markovianity is a prominent concept of the dynamics of the open quantum systems, which is of fundamental importance in quantum mechanics and quantum information. Despite of lots of efforts, the experimentally measuring of non-Markovianity of an open system is still limited to very small systems. Presently, it is still impossible to experimentally quantify the non-Markovianity of high dimension systems with the widely used Breuer-Laine-Piilo (BLP) trace distance measure. In this paper, we propose a method, combining experimental measurements and numerical calculations, that allow quantifying the non-Markovianity of a $N$ dimension system only scaled as $N^2$, successfully avoid the exponential scaling with the dimension of the open system in the current method. After the benchmark with a two-dimension open system, we demonstrate the method in quantifying the non-Markovanity of a high dimension open quantum random walk system.
Einstein-Podolsky-Rosen (EPR) steering is a type of quantum correlation which allows one to remotely prepare, or steer, the state of a distant quantum system. While EPR steering can be thought of as a purely spatial correlation there does exist a tem
In this paper, we study measures of quantum non-Markovianity based on the conditional mutual information. We obtain such measures by considering multiple parts of the total environment such that the conditional mutual information can be defined in th
We show that non-Markovian open quantum systems can exhibit exact Markovian dynamics up to an arbitrarily long time; the non-Markovianity of such systems is thus perfectly hidden, i.e. not experimentally detectable by looking at the reduced dynamics
Detuned systems can spontaneously achieve a synchronous dynamics and display robust quantum correlations in different local and global dissipation regimes. Beyond the Markovian limit, information backflow from the environment becomes a crucial mechan
Based on the nonincreasing property of quantum coherence via skew information under incoherent completely positive and trace-preserving maps, we propose a non-Markovianity measure for open quantum processes. As applications, by applying the proposed