ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Precursors of Flares in Active Region NOAA 10486

428   0   0.0 ( 0 )
 نشر من قبل Marianna Korsos
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted horizontal gradient WGM, is generalised form the horizontal gradient of the magnetic field, GM; another is the sum of the horizontal gradient of the magnetic field, GS, for all sunspot pairs). WGM is a photospheric indicator that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e. it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, S(lf), considers the overall morphology. Further, GS and S(lf) are photospheric newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small x-ray flares, their times of succession and their energies observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instrument. All approaches yield specific pre-cursory signatures for the imminence of flares.



قيم البحث

اقرأ أيضاً

Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law s caling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares, and the presence of correlation with EUV and X-ray flux, suggest that eruption of large flares can be linked to the small scale properties of the current structures.
The physical conditions leading the sunspot penumbra decay are poorly understood so far. We investigate the photospheric magnetic and velocity properties of a sunspot penumbra during the decay phase to advance the current knowledge of the conditions leading to this process. A penumbral decay was observed with the CRISP instrument at the Swedish 1m Solar Telescope on 2016 September 4 and 5 in active region NOAA 12585. During these days, full-Stokes spectropolarimetric scans along the Fe I 630 nm line pair were acquired over more than one hour. We inverted these observations with the VFISV code in order to obtain the evolution of the magnetic and velocity properties. We complement the study with data from instruments onboard the Solar Dynamics Observatory and Hinode space missions. The studied penumbra disappears progressively in both time and space. The magnetic flux evolution seems to be linked to the presence of Moving Magnetic Features (MMFs). Decreasing Stokes V signals are observed. Evershed flows and horizontal fields were detected even after the disappearance of the penumbral sector. The analyzed penumbral decay seems to result from the interaction between opposite polarity fields in type III MMFs and penumbra, while the presence of overlying canopies rules the evolution in the different penumbral sectors.
The NOAA active region AR 11029 was a small but highly active sunspot region which produced 73 GOES soft X-ray flares. The flares appear to show a departure from the well known power-law frequency-size distribution. Specifically, too few GOES C-class and no M-class flares were observed by comparison with a power-law distribution (Wheatland in Astrophys. J. 710, 1324, 2010). This was conjectured to be due to the region having insufficient magnetic energy to power large events. We construct nonlinear force-free extrapolations of the coronal magnetic field of active region AR 11029 using data taken on 24 October by the SOLIS Vector-SpectroMagnetograph (SOLIS/VSM), and data taken on 27 October by the Hinode Solar Optical Telescope SpectroPolarimeter (Hinode/SP). Force-free modeling with photospheric magnetogram data encounters problems because the magnetogram data are inconsistent with a force-free model, and we employ a recently developed `self-consistency procedure which addresses this and accommodates uncertainties in the boundary data (Wheatland and Regnier in Astrophys. J. 700, L88, 2009). We calculate the total energy and free energy of the self-consistent solution and find that the free energy was 4x10^29 erg on 24 October, and 7x10^31 erg on 27 October. An order of magnitude scaling between RHESSI non-thermal energy and GOES peak X-ray flux is established from a sample of flares from the literature and is used to estimate flare energies from observed GOES peak X-ray flux. Based on the scaling, we conclude that the estimated free energy of AR 11029 on 27 October when the flaring rate peaked is sufficient to power M-class or X-class flares, and hence the modeling does not appear to support the hypothesis that the absence of large flares is due to the region having limited energy.
207 - Yixing Fu , Brian T. Welsch 2015
We study the effect of newly emerged solar active regions (ARs) on the large-scale magnetic environment of pre-existing ARs (PEARs). We first present a theoretical approach to quantify the interaction energy between new ARs and PEARs as the differenc e between (i) the summed magnetic energies of their individual potential fields and (ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and PEAR magnetic flux, indicate the existence of topological free magnetic energy in the global coronal field that is independent of any internal free magnetic energy due to coronal electric currents flowing within the newly emerged and PEAR flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study on the influence of the emergence of new ARs on flare statistics in PEARs, using NOAAs Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of ARs in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new ARs is associated with a significant increase in the occurrence rate of X- and M-class flares in PEARs. This effect tends to be more significant when PEARs and new emerging ARs are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the breakout model of coronal mass ejections, might play a significant role in the occurrence of some flares.
We report a detailed event analysis on the M6.6-class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activities including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region was consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to a continuous accumulation of the small-scale magnetic patches. A few hours before the flare occurrence, the series of emerged/advected patches reconnected with a preexisting fields. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that, in a triggering process of a flare activity, all magnetic systems of multiple scales, not only the entire AR evolution but also the fine magnetic elements, are altogether involved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا