ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic fields in Neutron Stars

133   0   0.0 ( 0 )
 نشر من قبل Daniele Vigan\\`o
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

قيم البحث

اقرأ أيضاً

We explore the thermal and magnetic-field structure of a late-stage proto-neutron star. We find the dominant contribution to the entropy in different regions of the star, from which we build a simplified equation of state for the hot neutron star. Wi th this, we numerically solve the stellar equilibrium equations to find a range of models, including magnetic fields and rotation up to Keplerian velocity. We approximate the equation of state as a barotrope, and discuss the validity of this assumption. For fixed magnetic-field strength, the induced ellipticity increases with temperature; we give quantitative formulae for this. The Keplerian velocity is considerably lower for hotter stars, which may set a de-facto maximum rotation rate for non-recycled NSs well below 1 kHz. Magnetic fields stronger than around $10^{14}$ G have qualitatively similar equilibrium states in both hot and cold neutron stars, with large-scale simple structure and the poloidal field component dominating over the toroidal one; we argue this result may be universal. We show that truncating magnetic-field solutions at low multipoles leads to serious inaccuracies, especially for models with rapid rotation or a strong toroidal-field component.
We suggest a new mean field dynamo model in anomalous MagnetoHydroDynamics (AMHD) accounting for the mean spin (polarization) of the magnetized chiral (ultrarelativistic) plasma of a neutron star (NS). For simplicity we consider a non-superfluid NS w ith its rigid rotation neglecting also any matter turbulence (convection) within a star. On this way, we recover the Chiral Magnetic Effect (CME) as a possible source for the amplification of a seed, sufficiently strong magnetic field, $Bsim 10^{13},text{G}$, up to values $Bgtrsim 10^{18},text{G}$ in old NSs, having ages $tgtrsim 10^6,text{yr}$. The important issue in AMHD model suggested is the continuous evolution of the chiral imbalance providing the CME for these ages, $partial_tmu_5 (t) eq 0$, in spite of the fast spin-flip in Coulomb collisions in the dense NS plasma that leads to vanishing $mu_5to 0$ at an earlier epoch in the corresponding protoneutron star. In contrast to the conventional mean-field dynamos, the dynamo drivers in the model are produced due to magnetic field generated at the previous stages of stellar evolution. It makes our model basically nonlinear.
We investigate the effect of a strong magnetic field on the structure of neutron stars in a model with perturbative $f(R)$ gravity. The effect of an interior strong magnetic field of about $10^{17 sim 18}$ G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) model. We solve the modified spherically symmetric hydrostatic equilibrium equations derived for a gravity model with $f(R)=R+alpha R^2$. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter $alpha$ along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ($> 2$ M$_odot$) maximum neutron star mass through the modified mass-radius relation.
A superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron s tar core is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 10^6-10^7 yr. We estimate the size of flux free regions at 10^7 yr to be <~ 100 m for a magnetic field of 10^11 G and possibly smaller for stronger field strengths. For proton pairing models that are narrow, magnetic flux may be completely expelled from a thin shell of approximately the above size after 10^5 yr. This shell may insulate lower conductivity outer layers, where magnetic fields can diffuse and decay faster, from fields maintained in the highly conducting deep core.
Neutron stars are natural physical laboratories allowing us to study a plethora of phenomena in extreme conditions. In particular, these compact objects can have very strong magnetic fields with non-trivial origin and evolution. In many respects its magnetic field determines the appearance of a neutron star. Thus, understanding the field properties is important for interpretation of observational data. Complementing this, observations of diverse kinds of neutron stars enable us to probe parameters of electro-dynamical processes at scales unavailable in terrestrial laboratories. In this review we first briefly describe theoretical models of formation and evolution of magnetic field of neutron stars, paying special attention to field decay processes. Then we present important observational results related to field properties of different types of compact objects: magnetars, cooling neutron stars, radio pulsars, sources in binary systems. After that, we discuss which observations can shed light on obscure characteristics of neutron star magnetic fields and their behaviour. We end the review with a subjective list of open problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا