ترغب بنشر مسار تعليمي؟ اضغط هنا

Eddingtons Gravity in Immersed Spacetime

65   0   0.0 ( 0 )
 نشر من قبل Hemza Azri
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hemza Azri




اسأل ChatGPT حول البحث

We formulate Eddingtons affine gravity in a spacetime which is immersed in a larger eight dimensional space endowed with a hypercomplex structure. The dynamical equation of the first immersed Ricci-type tensor leads to gravitational field equations which include matter. We also study the dynamical effects of the second Ricci-type tensor when added to the Lagrangian density. A simple Lagrangian density constructed from combination of the standard Ricci tensor and a new tensor field that appears due to the immersion, leads to gravitational equations in which the vacuum energy gravitates with a different cosmological strength as in Phys. Rev. D {bf 90}, 064017 (2014), rather than with Newtons constant. As a result, the tiny observed curvature is reproduced due to large hierarchies rather than fine-tuning.

قيم البحث

اقرأ أيضاً

104 - Wei-Hsiang Shao , Che-Yu Chen , 2020
Motivated by the lack of rotating solutions sourced by matter in General Relativity as well as in modified gravity theories, we extend a recently discovered exact rotating solution of the minimal Einstein-scalar theory to its counterpart in Eddington -inspired Born-Infeld gravity coupled to a Born-Infeld scalar field. This is accomplished with the implementation of a well-developed mapping between solutions of Ricci-Based Palatini theories of gravity and General Relativity. The new solution is parametrized by the scalar charge and the Born-Infeld coupling constant apart from the mass and spin of the compact object. Compared to the spacetime prior to the mapping, we find that the high-energy modifications at the Born-Infeld scale are able to suppress but not remove the curvature divergence of the original naked null singularity. Depending on the sign of the Born-Infeld coupling constant, these modifications may even give rise to an additional timelike singularity exterior to the null one. In spite of that, both of the naked singularities before and after the mapping are capable of casting shadows, and as a consequence of the mapping relation, their shadows turn out to be identical as seen by a distant observer on the equatorial plane. Even though the scalar field induces a certain oblateness to the appearance of the shadow with its left and right endpoints held fixed, the closedness condition for the shadow contour sets a small upper bound on the absolute value of the scalar charge, which leads to observational features of the shadow closely resembling those of a Kerr black hole.
We discover a weak-gravity bound in scalar-gravity systems in the asymptotic-safety paradigm. The weak-gravity bound arises in these systems under the approximations we make, when gravitational fluctuations exceed a critical strength. Beyond this cri tical strength, gravitational fluctuations can generate complex fixed-point values in higher-order scalar interactions. Asymptotic safety can thus only be realized at sufficiently weak gravitational interactions. We find that within truncations of the matter-gravity dynamics, the fixed point lies beyond the critical strength, unless spinning matter, i.e., fermions and vectors, is also included in the model.
The question whether global symmetries can be realized in quantum-gravity-matter-systems has far-reaching phenomenological consequences. Here, we collect evidence that within an asymptotically safe context, discrete global symmetries of the form $mat hbb{Z}_n$, $n>4$, cannot be realized in a near-perturbative regime. In contrast, an effective-field-theory approach to quantum gravity might feature such symmetries, providing a mechanism to generate mass hierarchies in the infrared without the need for additional fine-tuning.
The gravitational memory effects of Chern-Simons modified gravity are considered in the asymptotically flat spacetime. If the Chern-Simons scalar does not directly couple with the ordinary matter fields, there are also displacement, spin and center-o f-mass memory effects as in general relativity. This is because the term of the action that violates the parity invariance is linear in the scalar field but quadratic in the curvature tensor. This results in the parity violation occuring at the higher orders in the inverse luminosity radius. The scalar field does not induce any new memory effects that can be detected by interferometers or pulsar timing arrays. The asymptotic symmetry is group is also the extended Bondi-Metzner-Sachs group. The constraints on the memory effects excited by the tensor modes are obtained.
106 - Ralf Lehnert 2006
Small violations of spacetime symmetries have recently been identified as promising Planck-scale signals. This talk reviews how such violations can arise in various approaches to quantum gravity, how the emergent low-energy effects can be described w ithin the framework of relativistic effective field theories, how suitable tests can be identified, and what sensitivities can be expected in current and near-future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا