ﻻ يوجد ملخص باللغة العربية
We investigate the isospin symmetry breaking effects within a recently derived Nambu-Jona-Lasinio related model by fitting the measured pseudoscalar meson masses and weak decay couplings $f_pi$, $f_K$. Our model contains the next to leading order terms in the $1/N_c$ expansion of the effective multi-quark Lagrangian, including the ones that break the chiral symmetry explicitly. We show the important phenomenological role of these interactions: (1) they lead to an accurate fit of the low-lying pseudoscalar nonet characteristics; (2) they account for a very good agreement of the current quark masses with the present PDG values; (3) they reduce by $40%$ the ratio $epsilon/epsilon$ of the $pi_0-eta$ and $pi_0-eta$ mixing angles, as compared to the case that contemplates explicit breaking only in the leading order, bringing it in consonance with the quoted values in the literature. The conventional NJL-type models fail in the joint description of these parameters.
A generalized 3 flavor Nambu-Jona--Lasinio Lagrangian including the explicit chiral symmetry breaking interactions which contribute at the same order in the large $1/N_c$ counting as the $U_A(1)$ t Hooft flavor determinant is considered to obtain the
The claim that the light quark mass ratio (m_d - m_u)/m_s can be extracted from the decay width ratio Gamma(eta -> pi^0 pi^+ pi^-)/Gamma(eta -> eta pi^+ pi^-) is critically investigated within a U(3) chiral unitary framework. The influence of the rec
We report our investigation on the doubly virtual TFFs $F_{{rm P}gamma^*}(Q^2_1,Q^2_2)$ for the ${rm P}togamma^*(q_1)gamma^*(q_2) ;({rm P}=pi^0,eta,eta)$ transitions using the light-front quark model (LFQM). Performing a LF calculation in the exactly
Using a sample of $1.3times 10^9$ $J/psi$ events collected with the BESIII detector, we report the first observation of $eta^{prime}topi^{+}pi^{-}pi^{+}pi^{-}$ and $eta^{prime}topi^{+}pi^{-}pi^{0}pi^{0}$. The measured branching fractions are $mathcal
We have revisited glueball mixing with the pseudoscalar mesons in the MIT bag model scheme. The calculation has been performed in the spherical cavity approximation to the bag using two different fermion propagators, the cavity and the free propagato