ﻻ يوجد ملخص باللغة العربية
A novel design of Resistive Plate Chambers (RPCs), using only a single resistive plate, is being proposed. Based on this design, two large size prototype chambers were constructed and were tested with cosmic rays and in particle beams. The tests confirmed the viability of this new approach. In addition to showing an improved single-particle response compared to the traditional 2-plate design, the novel chambers also prove to be suitable for calorimetric applications.
The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo s
The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Fl
A new design of highly granular hadronic calorimeter using Glass Resistive Plate Chambers (GRPCs) with embedded electronics has been proposed for the future International Linear Collider (ILC) experiments. It features a 2-bit threshold semi-digital r
Composite detectors made of stainless steel converters and multigap resistive plate chambers have been irradiated with quasi-monoenergetic neutrons with a peak energy of 175MeV. The neutron detection efficiency has been determined using two different
We report on studies of fast triggering and high-precision tracking using Resistive Plate Chambers (RPCs). Two beam tests were carried out with the 180 GeV muon beam at CERN using RPCs with gas gaps of 1.00 or 1.15 mm and equipped with readout strips