ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematics of ICMEs/shocks: blast wave reconstruction using type II emissions

43   0   0.0 ( 0 )
 نشر من قبل Pedro Corona-Romero
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a physical methodology to reconstruct the trajectory of interplanetary shocks using type II radio emission data. This technique calculates the shock trajectory assuming that the disturbance propagates as a blast wave in the interplanetary medium. We applied this Blast Wave Reconstruction (BWR) technique to analyze eight fast Earth-directed ICMEs/shocks associated with type II emissions. The technique deduces a shock trajectory that reproduces the type II frequency drifts, and calculates shock onset speed, shock transit time and shock speed at 1 AU. There were good agreements comparing the BWR results with the type II spectra, with data from coronagraph images, in situ measurements, and interplanetary scintillation (IPS) observations. Perturbations on the type II data affect the accuracy of the BWR technique. This methodology could be applied to track interplanetary shocks causing TII emissions in real-time, to predict the shock arrival time and shock speed at 1 AU.

قيم البحث

اقرأ أيضاً

153 - N. Gopalswamy , H. Xie , P. Makela 2009
We report on the radio-emission characteristics of 222 interplanetary (IP) shocks. A surprisingly large fraction of the IP shocks (~34%) is radio quiet (i.e., the shocks lacked type II radio bursts). The CMEs associated with the RQ shocks are general ly slow (average speed ~535 km/s) and only ~40% of the CMEs were halos. The corresponding numbers for CMEs associated with radio loud (RL) shocks are 1237 km/s and 72%, respectively. The RQ shocks are also accompanied by lower peak soft X-ray flux. CMEs associated with RQ (RL) shocks are generally accelerating (decelerating). The kinematics of CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock The RQ shocks seem to be mostly subcritical and quasi-perpendicular. The radio-quietness is predominant in the rise phase and decreases through the maximum and declining phases of solar cycle 23. The solar sources of the shock-driving CMEs follow the sunspot butterfly diagram, consistent with the higher-energy requirement for driving shocks.
In a step toward understanding the origin of the Galactic Halo, we have reexamined Type II Cepheids (T2C) in the field with new input from the second data release (DR2) of Gaia. For 45 T2C with periods from 1 to 20 days, parallaxes, proper motions, a nd [Fe/H] values are available for 25 stars. Only 5 show [Fe/H] < -1.5, while the remaining stars show thick disk kinematics and [Fe/H] > -0.90. We have compared the T2C stars of the field with their cousins in the globular clusters of the Halo and found that the globular clusters with T2C stars show metallicities and kinematics of a pure Halo population. The globulars may have formed during the overall collapse of the Galaxy while the individual thick disk T2C stars may have been captured from small systems that self-enriched prior to capture. The relationship of these two populations to the micro-galaxies currently recognized as surrounding the Galaxy is unclear.
Type II radio bursts are evidence of shocks in the solar atmosphere and inner heliosphere that emit radio waves ranging from sub-meter to kilometer lengths. These shocks may be associated with CMEs and reach speeds higher than the local magnetosonic speed. Radio imaging of decameter wavelengths (20-90 MHz) is now possible with LOFAR, opening a new radio window in which to study coronal shocks that leave the inner solar corona and enter the interplanetary medium and to understand their association with CMEs. To this end, we study a coronal shock associated with a CME and type II radio burst to determine the locations at which the radio emission is generated, and we investigate the origin of the band-splitting phenomenon.
The unprecedented quality of the observations available from the Atacama Large Millimetre/sub-millimetre Array (ALMA) calls for analysis methods making the best of them. Reconstructing in space the morphology and kinematics of radio sources is an und erdetermined problem that requires imposing additional constraints for its solution. The hypothesis of rotational invariance about a well-defined star axis, which is a good approximation to the description of the gas envelopes of many evolved stars and protostars, is particularly efficient in this role. In the first part of the article, a systematic use of simulated observations allows for identifying the main problems and for constructing quantities aimed at solving them. In particular the evaluation of the orientation of the star axis in space and the differentiation between expansion along the star axis and rotation about it are given special attention. The use of polar rather than Cartesian sky coordinates is shown to better match the morphology and kinematics of actual stars. The radial dependence of the gas density and temperature and the possible presence of velocity gradients are briefly considered. In the second part, the results obtained in the first part are applied to a few stars taken as examples with the aim of evaluating their usefulness when applied to concrete cases. A third part takes stock of what precedes and formulates some guidelines for modelling the radio emission of axisymmetric radio sources, limited however to the mathematics and geometry of the problem, physics considerations being ignored.
The vulnerability of technology on which present society relies demands that a solar event, its time of arrival at Earth, and its degree of geoeffectiveness be promptly forecasted. Motivated by improving predictions of arrival times at Earth of shock s driven by coronal mass ejections (CMEs), we have analyzed 71 Earth-directed events in different stages of their propagation. The study is primarily based on approximated locations of interplanetary (IP) shocks derived from type II radio emissions detected by the Wind/WAVES experiment during 1997-2007. Distance-time diagrams resulting from the combination of white-light corona, IP type II radio, and in situ data lead to the formulation of descriptive profiles of each CMEs journey toward Earth. Furthermore, two different methods to track and predict the location of CME-driven IP shocks are presented. The linear method, solely based on Wind/WAVES data, arises after key modifications to a pre-existing technique that linearly projects the drifting low-frequency type II emissions to 1 AU. This upgraded method improves forecasts of shock arrival time by almost 50%. The second predictive method is proposed on the basis of information derived from the descriptive profiles, and relies on a single CME height-time point and on low-frequency type II radio emissions to obtain an approximate value of the shock arrival time at Earth. In addition, we discuss results on CME-radio emission associations, characteristics of IP propagation, and the relative success of the forecasting methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا