ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks

203   0   0.0 ( 0 )
 نشر من قبل Antonio Lara
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt disks with two and three linearly arranged nanoholes directed at 45 and 135 degrees with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magnetic permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.


قيم البحث

اقرأ أيضاً

115 - Stavros Komineas 2013
A vortex-antivortex dipole can be generated due to current with in-plane spin-polarization, flowing into a magnetic element, which then behaves as a spin transfer oscillator. Its dynamics is analyzed using the Landau-Lifshitz equation including a Slo nczewski spin-torque term. We establish that the vortex dipole is set in steady state rotational motion due to the interaction between the vortices, while an external in-plane magnetic field can tune the frequency of rotation. The rotational motion is linked to the nonzero skyrmion number of the dipole. The spin-torque acts to stabilize the vortex dipole at a definite vortex-antivortex separation distance. In contrast to a free vortex dipole, the rotating pair under spin-polarized current is an attractor of the motion, therefore a stable state. Three types of vortex-antivortex pairs are obtained as we vary the external field and spin-torque strength. We give a guide for the frequency of rotation based on analytical relations.
Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.
We demonstrate a quasi ballistic switching of the magnetization in a microscopic mag-neto resistive memory cell. By means of time resolved magneto transport we follow the large angle precession of the free layer magnetization of a spin valve cell upo n applica-tion of transverse magnetic field pulses. Stopping the field pulse after a 180 degree precession rotation leads to magnetization reversal with reversal times as short as 165 ps. This switching mode represents the fundamental ultra fast limit of field induced magnetization reversal.
The effect of noise on the process of high-speed remagnetization of vortex state of a pentagonal array of five circular magnetic nanoparticles is studied by means of computer simulation of Landau-Lifshits model. The mean switching time and its standa rd deviation of the reversal between the counterclockwise and clockwise vorticities have been computed. It has been demonstrated that with the reversal by the pulse with sinusoidal shape, the optimal pulse duration exists, which minimizes both the mean switching time (MST) and the standard deviation (SD). Besides, both MST and SD significantly depend on the angle between the reversal magnetic field and pentagon edge, and the optimal angle roughly equals 10 degrees. Also, it is demonstrated that the optimization of the angle, duration and the amplitude of the driving field leads to significant decrease of both MST and SD. In particular, for the considered parameters, the MST can be decreased from 60 ns to 2-3 ns. Such a chain of magnetic nanoparticles can effectively be used as an element of magnetoresistive memory, and at the temperature 300K the stable operation of the element is observed up to rather small size of nanoparticles with the raduis of 20 nm.
Energy-efficient switching of magnetization is a central problem in nonvolatile magnetic storage and magnetic neuromorphic computing. In the past two decades, several efficient methods of magnetic switching were demonstrated including spin torque, ma gneto-electric, and microwave-assisted switching mechanisms. Here we report the discovery of a new mechanism giving rise to magnetic switching. We experimentally show that low-dimensional magnetic chaos induced by alternating spin torque can strongly increase the rate of thermally-activated magnetic switching in a nanoscale ferromagnet. This mechanism exhibits a well-pronounced threshold character in spin torque amplitude and its efficiency increases with decreasing spin torque frequency. We present analytical and numerical calculations that quantitatively explain these experimental findings and reveal the key role played by low-dimensional magnetic chaos near saddle equilibria in enhancement of the switching rate. Our work unveils an important interplay between chaos and stochasticity in the energy assisted switching of magnetic nanosystems and paves the way towards improved energy efficiency of spin torque memory and logic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا