ترغب بنشر مسار تعليمي؟ اضغط هنا

Passive galaxies as tracers of cluster environments at z~2

113   0   0.0 ( 0 )
 نشر من قبل Veronica Strazzullo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Even 10 billion years ago, the cores of the first galaxy clusters are often found to host a characteristic population of massive galaxies with already suppressed star formation. Here we search for distant cluster candidates at z~2 using massive passive galaxies as tracers. With a sample of ~40 spectroscopically confirmed passive galaxies at 1.3<z<2.1, we tune photometric redshifts of several thousands passive sources in the full 2 sq.deg. COSMOS field. This allows us to map their density in redshift slices, probing the large scale structure in the COSMOS field as traced by passive sources. We report here on the three strongest passive galaxy overdensities that we identify in the redshift range 1.5<z<2.5. While the actual nature of these concentrations is still to be confirmed, we discuss their identification procedure, and the arguments supporting them as candidate galaxy clusters (likely mid-10^13 M_sun range). Although this search approach is likely biased towards more evolved structures, it has the potential to select still rare, cluster-like environments close to their epoch of first appearance, enabling new investigations of the evolution of galaxies in the context of structure growth.



قيم البحث

اقرأ أيضاً

We examine whether the super star-forming clumps (R~1-3 kpc; M~10^8-10^9.5 Msun) now known to be a key component of star-forming galaxies at z~2 could be the formation sites of the locally observed old globular cluster population. We find that the st ellar populations of these super star-forming clumps are excellent matches to those of local metal-rich globular clusters. Moreover, this globular cluster population is known to be associated with the bulges / thick disks of galaxies, and we show that its spatial distribution and kinematics are consistent with the current understanding of the assembly of bulges and thick disks from super star-forming clumps at high redshift. Finally, with the assumption that star formation in these clumps proceeds as a scaled-up version of local star formation in molecular clouds, this formation scenario reproduces the observed numbers and mass spectra of metal-rich globular clusters. The resulting link between the turbulent and clumpy disks observed in high-redshift galaxies and a local globular cluster population provides a plausible co-evolutionary scenario for several of the major components of a galaxy: the bulge, the thick disk, and one of the globular cluster populations.
We use the high angular resolution in the near-infrared of the WFC3 on HST to determine YHVz color-color selection criteria to identify and characterize 1.5<z<3.5 galaxies in the HUDF09 and ERS (GOODS-South) fields. The WFC3 NIR images reveal galaxie s at these redshifts that were undetected in the rest-frame UV HUDF/GOODS images, as well as true centers and regular disks in galaxies classified as highly irregular in rest-frame UV light. Across the 1.5<z<2.15 redshift range, regular disks are unveiled in the WFC3 images of ~25% of both intermediate and high mass galaxies, i.e., above 10^10 Msun. Meanwhile, galaxies maintaining diffuse and/or irregular morphologies in the rest-frame optical light---i.e., not yet dynamically settled---at these epochs are almost entirely restricted to masses below 10^11 Msun. In contrast at 2.25 < z < 3.5 these diffuse and/or irregular structures overwhelmingly dominate the morphological mix in both the intermediate and high mass regimes, while no regular disks, and only a small fraction (25%) of smooth spheroids, are evident above 10^11 Msun. Strikingly, by 1.5 < z < 2.25 roughly 2 out of every 3 galaxies at the highest masses are spheroids. In our small sample, the fraction of star-forming galaxies at these mass scales decreases concurrently from ~60% to ~5%. If confirmed, this indicates that z~2 is the epoch of both the morphological transformation and quenching of star-formation which assemble the first substantial population of massive ellipticals.
We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravita tional lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest-frame 3600 to 6800AA, including robust detections of fainter lines such as H-gamma, [SII]6717,6732, and in one instance [NeII]3869. SDSS J090122.37+181432.3 shows evidence for AGN activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties, including star-formation rate (SFR), metallicity, dynamical mass, and dust extinction. In all respects, the lensed objects appear fairly typical of UV-selected star-forming galaxies at z~2. The Clone occupies a position on the emission-line diagnostic diagram of [OIII]/H-beta vs. [NII]/H-alpha that is offset from the locations of z~0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [SII] line ratio, high electron densities (~1000 cm^(-3)) are inferred compared to local galaxies, and [OIII]/[OII] line ratios indicate higher ionization parameters compared to the local population. Building on previous similar results at z~2, these measurements provide further evidence (at high S/N) that star-forming regions are significantly different in high-redshift galaxies, compared to their local counterparts (abridged).
We confirm the detection of 3 groups in the Lynx supercluster, at z~1.3, and give their redshifts and masses. We study the properties of the group galaxies as compared to the central clusters, RXJ0849+4452 and RXJ0848+4453, selecting 89 galaxies in t he clusters and 74 galaxies in the groups. We morphologically classify galaxies by visual inspection, noting that our early-type galaxy (ETG) sample would have been contaminated at the 30% -40% level by simple automated classification methods (e.g. based on Sersic index). In luminosity selected samples, both clusters and groups show high fractions of Sa galaxies. The ETG fractions never rise above ~50% in the clusters, which is low compared to the fractions observed in clusters at z~1. However, ETG plus Sa fractions are similar to those observed for ETGs in clusters at z~1. Bulge-dominated galaxies visually classified as Sas might also be ETGs with tidal features or merger remnants. They are mainly red and passive, and span a large range in luminosity. Their star formation seems to have been quenched before experiencing a morphological transformation. Because their fraction is smaller at lower redshifts, they might be the spiral population that evolves into ETGs. For mass-selected samples, the ETG fraction show no significant evolution with respect to local clusters, suggesting that morphological transformations occur at lower masses and densities. The ETG mass-size relation shows evolution towards smaller sizes at higher redshift in both clusters and groups, while the late-type mass-size relation matches that observed locally. The group ETG red sequence shows lower zero points and larger scatters than in clusters, both expected to be an indication of a younger galaxy population. The estimated age difference is small when compared to the difference in age at different galaxy masses.
We study the structural evolution of massive galaxies by linking progenitors and descendants at a constant cumulative number density of n_c=1.4x10^{-4} Mpc^{-3} to z~3. Structural parameters were measured by fitting Sersic profiles to high resolution CANDELS HST WFC3 J_{125} and H_{160} imaging in the UKIDSS-UDS at 1<z<3 and ACS I_{814} imaging in COSMOS at 0.25<z<1. At a given redshift, we selected the HST band that most closely samples a common rest-frame wavelength so as to minimize systematics from color gradients in galaxies. At fixed n_c, galaxies grow in stellar mass by a factor of ~3 from z~3 to z~0. The size evolution is complex: galaxies appear roughly constant in size from z~3 to z~2 and then grow rapidly to lower redshifts. The evolution in the surface mass density profiles indicates that most of the mass at r<2 kpc was in place by z~2, and that most of the new mass growth occurred at larger radii. This inside-out mass growth is therefore responsible for the larger sizes and higher Sersic indices of the descendants toward low redshift. At z<2, the effective radius evolves with the stellar mass as r_e M^{2.0}, consistent with scenarios that find dissipationless minor mergers to be a key driver of size evolution. The progenitors at z~3 were likely star-forming disks with r_e~2 kpc, based on their low Sersic index of n~1, low median axis ratio of b/a~0.52, and typical location in the star-forming region of the U-V versus V-J diagram. By z~1.5, many of these star-forming disks disappeared, giving rise to compact quiescent galaxies. Toward lower redshifts, these galaxies continued to assemble mass at larger radii and became the local ellipticals that dominate the high mass end of the mass function at the present epoch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا