ﻻ يوجد ملخص باللغة العربية
New data from the Herschel Space Observatory are broadening our understanding of the physics and evolution of the outer regions of protoplanetary disks in star forming regions. In particular they prove to be useful to identify transitional disk candidates. The goals of this work are to complement the detections of disks and the identification of transitional disk candidates in the Lupus clouds with data from the Herschel Gould Belt Survey. We extracted photometry at 70, 100, 160, 250, 350 and 500 $mu$m of all spectroscopically confirmed Class II members previously identified in the Lupus regions and analyzed their updated spectral energy distributions. We have detected 34 young disks in Lupus in at least one Herschel band, from an initial sample of 123 known members in the observed fields. Using the criteria defined in Ribas et al. (2013) we have identified five transitional disk candidates in the region. Three of them are new to the literature. Their PACS-70 $mu$m fluxes are systematically higher than those of normal T Tauri stars in the same associations, as already found in T Cha and in the transitional disks in the Chamaeleon molecular cloud. Herschel efficiently complements mid-infrared surveys for identifying transitional disk candidates and confirms that these objects seem to have substantially different outer disks than the T Tauri stars in the same molecular clouds.
Transitional disks are circumstellar disks with inner holes that in some cases are produced by planets and/or substellar companions in these systems. For this reason, these disks are extremely important for the study of planetary system formation. Th
Transitional disks are protoplanetary disks with opacity gaps/cavities in their dust distribution, a feature that may be linked to planet formation. We perform Bayesian modeling of the three transitional disks SZ Cha, CS Cha and T25 including photome
Context. Observations of nearby star-forming regions with the Herschel Space Observatory complement our view of the protoplanetary disks in Ophiuchus with information about the outer disks. Aims. The main goal of this project is to provide new far-in
Blazars are a highly-variable, radio-loud subclass of active galactic nuclei (AGN). In order to better understand such objects we must be able to easily identify candidate blazars from the growing population of unidentified sources. Working towards t
We present the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-Shooter spectrograp