ﻻ يوجد ملخص باللغة العربية
The equivariant Gromov--Hausdorff convergence of metric spaces is studied. Where all isometry groups under consideration are compact Lie, it is shown that an upper bound on the dimension of the group guarantees that the convergence is by Lie homomorphisms. Additional lower bounds on curvature and volume strengthen this result to convergence by monomorphisms, so that symmetries can only increase on passing to the limit.
We show that every finite-dimensional Alexandrov space X with curvature bounded from below embeds canonically into a product of an Alexandrov space with the same curvature bound and a Euclidean space such that each affine function on X comes from an affine function on the Euclidean space.
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We
Let $(X,d)$ be an $n$-dimensional Alexandrov space whose Hausdorff measure $mathcal{H}^n$ satisfies a condition giving the metric measure space $(X,d,mathcal{H}^n)$ a notion of having nonnegative Ricci curvature. We examine the influence of large vol
We prove the differentiability of Lipschitz maps X-->V, where X is a complete metric measure space satisfying a doubling condition and a Poincare inequality, and V is a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new ch
It is shown that a construction of Z. Zhang and Y. Xiao on open subsets of Ptolemaic spaces yields, when the subset has boundary containing at least two points, metrics that are Gromov hyperbolic with parameter $log 2$ and strongly hyperbolic with pa