ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise characterization of an atomic magnetometer at sub-millihertz frequencies

120   0   0.0 ( 0 )
 نشر من قبل Ignacio Mateos
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Noise measurements have been carried out in the LISA bandwidth (0.1 mHz to 100 mHz) to characterize an all-optical atomic magnetometer based on nonlinear magneto-optical rotation. This was done in order to assess if the technology can be used for space missions with demanding low-frequency requirements like the LISA concept. Magnetometry for low-frequency applications is usually limited by $1/f$ noise and thermal drifts, which become the dominant contributions at sub-millihertz frequencies. Magnetic field measurements with atomic magnetometers are not immune to low-frequency fluctuations and significant excess noise may arise due to external elements, such as temperature fluctuations or intrinsic noise in the electronics. In addition, low-frequency drifts in the applied magnetic field have been identified in order to distinguish their noise contribution from that of the sensor. We have found the technology suitable for LISA in terms of sensitivity, although further work must be done to characterize the low-frequency noise in a miniaturized setup suitable for space missions.



قيم البحث

اقرأ أيضاً

We demonstrate an optically pumped $^{87}$Rb magnetometer in a microfabricated vapor cell based on a zero-field dispersive resonance generated by optical modulation of the $^{87}$Rb ground state energy levels. The magnetometer is operated in the spin -exchange relaxation-free regime where high magnetic field sensitivities can be achieved. This device can be useful in applications requiring array-based magnetometers where radio frequency magnetic fields can induce cross-talk among adjacent sensors or affect the source of the magnetic field being measured.
222 - D. Jang , M. Kimbrue , Y. J. Yoo 2018
We have developed a method to characterize the spectral response of an uncooled microbolometer focal plane array at a broad range of terahertz (THz) frequencies (4~50 THz). This is achieved by using a spectrum-tailored blackbody radiator as a broadba nd THz source and measuring its spectral power with a Fourier transform infrared (FTIR) interferometer. With an additional measurement with a pyroelectric detector as a reference, the spectral response of the microbolometer relative to the pyroelectric reference is obtained with a signal-to-noise ratio of 100 over a >50 THz bandwidth.
We demonstrate remote detection of rotating machinery, using an atomic magnetometer at room temperature and in an unshielded environment. The system relies on the coupling of the AC magnetic signature of the target with the spin-polarized, precessing atomic vapor of a radio-frequency optical atomic magnetometer. The AC magnetic signatures of rotating equipment or electric motors appear as sidebands in the power spectrum of the atomic sensor, which can be tuned to avoid noisy bands that would otherwise hamper detection. A portable apparatus is implemented and experimentally tested. Proof-of-concept investigations are performed with test targets mimicking possible applications, and the operational conditions for optimum detection are determined. Our instrument provides comparable or better performance than a commercial fluxgate and allows detection of rotating machinery behind a wall. These results demonstrate the potential for ultrasensitive devices for remote industrial and usage monitoring, security, and surveillance.
Silicon photomultipliers (SiPMs) have a low radioactivity, compact geometry, low operation voltage, and reasonable photo-detection efficiency for vacuum ultraviolet light (VUV). Therefore it has the potential to replace photomultiplier tubes (PMTs) f or future dark matter experiments with liquid xenon (LXe). However, SiPMs have nearly two orders of magnitude higher dark count rate (DCR) compared to that of PMTs at the LXe temperature ($sim$ 165 K). This type of high DCR mainly originates from the carriers that are generated by band-to-band tunneling effect. To suppress the tunneling effect, we have developed a new SiPM with lowered electric field strength in cooperation with Hamamatsu Photonics K. K. and characterized its performance in a temperature range of 153 K to 298 K. We demonstrated that the newly developed SiPMs had 6--54 times lower DCR at low temperatures compared to that of the conventional SiPMs.
We operate a nitrogen vacancy (NV-) diamond magnetometer at ambient temperatures and study the dependence of its bandwidth on experimental parameters including optical and microwave excitation powers. We introduce an analytical theory that yields an explicit formula for the response of an ensemble of NV- spins to an oscillating magnetic field, such as in NMR applications. We measure a detection bandwidth of 1.6 MHz and a sensitivity of 4.6 nT/Hz^(1/2), unprecedented in a detector with this active volume and close to the photon shot noise limit of our experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا