ﻻ يوجد ملخص باللغة العربية
We consider inverse obstacle and transmission scattering problems where the source of the incident waves is located on a smooth closed surface that is a boundary of a domain located outside of the obstacle/inhomogeneity of the media. The domain can be arbitrarily small but fixed.The scattered waves are measured on the same surface. An effective procedure is suggested for recovery of interior eigenvalues by these data.
We provide a purely variational proof of the existence of eigenvalues below the bottom of the essential spectrum for the Schrodinger operator with an attractive $delta$-potential supported by a star graph, i.e. by a finite union of rays emanating fro
We consider inverse potential scattering problems where the source of the incident waves is located on a smooth closed surface outside of the inhomogeneity of the media. The scattered waves are measured on the same surface at a fixed value of the ene
We prove an analogue of the magnetic nodal theorem on quantum graphs: the number of zeros $phi$ of the $n$-th eigenfunction of the Schrodinger operator on a quantum graph is related to the stability of the $n$-th eigenvalue of the perturbation of the
We consider the Dirichlet Laplacian in a straight three dimensional waveguide with non-rotationally invariant cross section, perturbed by a twisting of small amplitude. It is well known that such a perturbation does not create eigenvalues below the e
We consider the interior transmission eigenvalue (ITE) problem, which arises when scattering by inhomogeneous media is studied. The ITE problem is not self-adjoint. We show that positive ITEs are observable together with plus or minus signs that are