ﻻ يوجد ملخص باللغة العربية
We consider a Bose-Hubbard trimer, i.e. an ultracold Bose gas populating three quantum states. The latter can be either different sites of a triple-well potential or three internal states of the atoms. The bosons can tunnel between different states with variable tunnelling strength between two of them. This will allow us to study; i) different geometrical configurations, i.e. from a closed triangle to three aligned wells and ii) a triangular configuration with a $pi$-phase, i.e. by setting one of the tunnellings negative. By solving the corresponding three-site Bose-Hubbard Hamiltonian we obtain the ground state of the system as a function of the trap topology. We characterise the different ground states by means of the coherence and entanglement properties. For small repulsive interactions, fragmented condensates are found for the $pi$-phase case. These are found to be robust against small variations of the tunnelling in the small interaction regime. A low-energy effective many-body Hamiltonian restricted to the degenerate manifold provides a compelling description of the $pi$-phase degeneration and explains the low-energy spectrum as excitations of discrete semifluxon states.
We consider the problem when there are two kinds of Bosons with an attraction between them. We find the system to consist of two Bose condensates with an additional pairing order between the Bosons. The properties of this state are discussed.
The recent experimental condensation of ultracold atoms in a triangular optical lattice with negative effective tunneling energies paves the way to study frustrated systems in a controlled environment. Here, we explore the critical behavior of the ch
The quantum evolution of a cloud of bosons initially localized on part of a one dimensional optical lattice and suddenly subjected to a linear ramp is studied, realizing a quantum analog of the Galileo ramp experiment. The main remarkable effects of
Bose-Einstein condensation (BEC) of an ideal gas is investigated, beyond the thermodynamic limit, for a finite number $N$ of particles trapped in a generic three-dimensional power-law potential. We derive an analytical expression for the condensation
Bosonic lattice systems with non-trivial interactions represent an intriguing platform to study exotic phases of matter. Here, we study the effects of extended correlated hopping processes in a system of bosons trapped in a lattice geometry. The inte