ﻻ يوجد ملخص باللغة العربية
Quantum dots are nanoscopic systems, where carriers are confined in all three spatial directions. Such nanoscopic systems are suitable for fundamental studies of quantum mechanics and are candidates for applications such as quantum information processing. It was also proposed that linear arrangements of quantum dots could be used as quantum cascade laser. In this work we study the impact of electron-electron interactions on transport in a spinful serial triple quantum dot system weakly coupled to two leads. We find that due to electron-electron scattering processes the transport is enabled beyond the common single-particle transmission channels. This shows that the scenario in the serial quantum dots intrinsically deviates from layered structures such as quantum cascade lasers, where the presence of well-defined single-particle resonances between neighboring levels are crucial for device operation. Additionally, we check the validity of the Pauli master equation by comparing it with the first-order von Neumann approach. Here we demonstrate that coherences are of relevance if the energy spacing of the eigenstates is smaller than the lead transition rate multiplied by $hbar$.
The effect of electron-electron interaction on the low-temperature conductivity of graphene is investigated experimentally. Unlike in other two-dimensional systems, the electron-electron interaction correction in graphene is sensitive to the details
We report on a theoretical study of the influence of electron-electron interactions on ARPES spectra in graphene that is based on the random-phase-approximation and on graphenes massless Dirac equation continuum model. We find that level repulsion be
We present a unified theory of magnetic damping in itinerant electron ferromagnets at order $q^2$ including electron-electron interactions and disorder scattering. We show that the Gilbert damping coefficient can be expressed in terms of the spin con
Single crystal ZnO nanowires doped with indium are synthesized via the laser-assisted chemical vapor deposition method. The conductivity of the nanowires is measured at low temperatures in magnetic fields both perpendicular and parallel to the wire a
In this work, we have investigated conduction through an artificial molecule comprising two coupled quantum dots. The question addressed is the role of inter-dot coupling on electronic transport. We find that the current through the molecule exhibits