ترغب بنشر مسار تعليمي؟ اضغط هنا

BIGHORNS - Broadband Instrument for Global HydrOgen ReioNisation Signal

51   0   0.0 ( 0 )
 نشر من قبل Marcin Sokolowski PhD
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The redshifted 21cm line of neutral hydrogen (HI), potentially observable at low radio frequencies (~50-200 MHz), should be a powerful probe of the physical conditions of the inter-galactic medium during Cosmic Dawn and the Epoch of Reionisation (EoR). The sky-averaged HI signal is expected to be extremely weak (~100 mK) in comparison to the foreground of up to 10000 K at the lowest frequencies of interest. The detection of such a weak signal requires an extremely stable, well characterised system and a good understanding of the foregrounds. Development of a nearly perfectly (~mK accuracy) calibrated total power radiometer system is essential for this type of experiment. We present the BIGHORNS (Broadband Instrument for Global HydrOgen ReioNisation Signal) experiment which was designed and built to detect the sky-averaged HI signal from the EoR at low radio frequencies. The BIGHORNS system is a mobile total power radiometer, which can be deployed in any remote location in order to collect radio-interference (RFI) free data. The system was deployed in remote, radio quiet locations in Western Australia and low RFI sky data have been collected. We present a description of the system, its characteristics, details of data analysis and calibration. We have identified multiple challenges to achieving the required measurement precision, which triggered two major improvements for the future system.

قيم البحث

اقرأ أيضاً

FORCE is a 1.2 tonnes small mission dedicated for wide-band fine-imaging x-ray observation. It covers from 1 to 80 keV with a good angular resolution of $15$ half-power-diameter. It is proposed to be launched around mid-2020s and designed to reach a limiting sensitivity as good as $F_X (10-40~{rm keV}) = 3 times 10^{-15}$~erg cm$^{-2}$ s$^{-1}$ keV$^{-1}$ within 1~Ms. This number is one order of magnitude better than current best one. With its high-sensitivity wide-band coverage, FORCE will probe the new science field of missing BHs, searching for families of black holes of which populations and evolutions are not well known. Other point-source and diffuse-source sciences are also considered. FORCE will also provide the hard x-ray coverage to forthcoming large soft x-ray observatories.
We present a conceptual design study of external calibrators in the 21 cm experiment towards detecting the globally averaged radiation of the epoch of reionization (EoR). Employment of external calibrator instead of internal calibrator commonly used in current EoR experiments allows to remove instrumental effects such as beam pattern, receiver gain and instability of the system if the conventional three-position switch measurements are implemented in a short time interval. Furthermore, in the new design the antenna system is placed in an underground anechoic chamber with an open/closing ceiling to maximally reduce the environmental effect such as RFI and ground radiation/reflection. It appears that three of the four external calibrators proposed in this paper, including two indoor artificial transmitters and one outdoor celestial radiation (the Galactic polarization), fail to meet our purpose. Diurnal motion of the Galactic diffuse emission turns to be the most possible source as an external calibrator, for which we have discussed the observational strategy and the algorithm of extracting the EoR signal.
A large-N correlator that makes use of Field Programmable Gate Arrays and Graphics Processing Units has been deployed as the digital signal processing system for the Long Wavelength Array station at Owens Valley Radio Observatory (LWA-OV), to enable the Large Aperture Experiment to Detect the Dark Ages (LEDA). The system samples a ~100MHz baseband and processes signals from 512 antennas (256 dual polarization) over a ~58MHz instantaneous sub-band, achieving 16.8Tops/s and 0.236 Tbit/s throughput in a 9kW envelope and single rack footprint. The output data rate is 260MB/s for 9 second time averaging of cross-power and 1 second averaging of total-power data. At deployment, the LWA-OV correlator was the largest in production in terms of N and is the third largest in terms of complex multiply accumulations, after the Very Large Array and Atacama Large Millimeter Array. The correlators comparatively fast development time and low cost establish a practical foundation for the scalability of a modular, heterogeneous, computing architecture.
We describe the design of the Commissioning Instrument for the Dark Energy Spectroscopic Instrument (DESI). DESI will obtain spectra over a 3 degree field of view using the 4-meter Mayall Telescope at Kitt Peak, AZ. In order to achieve the required i mage quality over this field of view, a new optical corrector is being installed at the Mayall Telescope. The Commissioning Instrument is designed to characterize the image quality of the new optical system. The Commissioning Instrument has five commercial cameras; one at the center of the focal surface and four near the periphery of the field and at the cardinal directions. There are also 22 illuminated fiducials, distributed throughout the focal surface, that will be used to test the system that will map between the DESI fiber positioners and celestial coordinates. We describe how the commissioning instrument will perform commissioning tasks for the DESI project and thereby eliminate risks.
We present a study of internal reflection and cross coupling systematics in Phase I of the Hydrogen Epoch of Reionization Array (HERA). In a companion paper, we outlined the mathematical formalism for such systematics and presented algorithms for mod eling and removing them from the data. In this work, we apply these techniques to data from HERAs first observing season as a method demonstration. The data show evidence for systematics that, without removal, would hinder a detection of the 21 cm power spectrum for the targeted EoR line-of-sight modes in the range 0.2 < k_parallel < 0.5 h^-1 Mpc. After systematic removal, we find we can recover these modes in the power spectrum down to the integrated noise-floor of a nightly observation, achieving a dynamic range in the EoR window of 10^-6 in power (mK^2 units) with respect to the bright galactic foreground signal. In the absence of other systematics and assuming the systematic suppression demonstrated here continues to lower noise levels, our results suggest that fully-integrated HERA Phase I may have the capacity to set competitive upper limits on the 21 cm power spectrum. For future observing seasons, HERA will have upgraded analog and digital hardware to better control these systematics in the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا