ترغب بنشر مسار تعليمي؟ اضغط هنا

New radio observations of anomalous microwave emission in the HII region RCW175

172   0   0.0 ( 0 )
 نشر من قبل Elia Stefano Battistelli Dr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E.S. Battistelli




اسأل ChatGPT حول البحث

We have observed the HII region RCW175 with the 64m Parkes telescope at 8.4GHz and 13.5GHz in total intensity, and at 21.5GHz in both total intensity and polarization. High angular resolution, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the HII region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component with a relatively large hydrogen number density n_H=26.3/cm^3 and a cold component with a hydrogen number density of n_H=150/cm^3. The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to our spectral coverage and angular resolution, we have been able to derive one of the first AME maps, at 13.5GHz, showing clear evidence that the bulk of the AME arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5GHz of 2.2pm0.2(rand.)pm0.3(sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission associated with AME.

قيم البحث

اقرأ أيضاً

58 - C. Dickinson 2008
We present evidence for anomalous microwave emission in the RCW175 hii region. Motivated by 33 GHz $13arcmin$ resolution data from the Very Small Array (VSA), we observed RCW175 at 31 GHz with the Cosmic Background Imager (CBI) at a resolution of $4a rcmin$. The region consists of two distinct components, G29.0-0.6 and G29.1-0.7, which are detected at high signal-to-noise ratio. The integrated flux density is $5.97pm0.30$ Jy at 31 GHz, in good agreement with the VSA. The 31 GHz flux density is $3.28pm0.38$ Jy ($8.6sigma$) above the expected value from optically thin free-free emission based on lower frequency radio data and thermal dust constrained by IRAS and WMAP data. Conventional emission mechanisms such as optically thick emission from ultracompact hii regions cannot easily account for this excess. We interpret the excess as evidence for electric dipole emission from small spinning dust grains, which does provide an adequate fit to the data.
The dust feature G159.6--18.5 in the Perseus region has previously been observed with the COSMOSOMAS experiment citep{Watson:05} on angular scales of $approx$ 1$^{circ}$, and was found to exhibit anomalous microwave emission. We present new observati ons of this dust feature, performed with the Very Small Array (VSA) at 33 GHz, to help increase the understanding of the nature of this anomalous emission. On the angular scales observed with the VSA ($approx$ 10 -- 40$^{prime}$), G159.6--18.5 consists of five distinct components, each of which have been individually analysed. All five of these components are found to exhibit an excess of emission at 33 GHz, and are found to be highly correlated with far-infrared emission. We provide evidence that each of these compact components have anomalous emission that is consistent with electric dipole emission from very small, rapidly rotating dust grains. These components contribute $approx$ 10 % to the flux density of the diffuse extended emission detected by COSMOSOMAS, and are found to have a similar radio emissivity.
We discuss in this paper the problem of the Anomalous Microwave Emission (AME) in the light of ongoing or future observations to be performed with the largest fully steerable radio telescope in the world. High angular resolution observations of the A ME will enable astronomers to drastically improve the knowledge of the AME mechanisms as well as the interplay between the different constituents of the interstellar medium in our galaxy. Extragalactic observations of the AME have started as well, and high resolution is even more important in this kind of observations. When cross-correlating with IR-dust emission, high angular resolution is also of fundamental importance in order to obtain unbiased results. The choice of the observational frequency is also of key importance in continuum observation. We calculate a merit function that accounts for the signal-to-noise ratio (SNR) in AME observation given the current state-of-the-art knowledge and technology. We also include in our merit functions the frequency dependence in the case of multifrequency observations. We briefly mention and compare the performance of four of the largest radiotelescopes in the world and hope the observational programs in each of them will be as intense as possible.
We present observations of the Cygnus OB2 region obtained with the Giant Metrewave Radio Telescope (GMRT) at the frequencies of 325 MHz and 610 MHz. In this contribution we focus on the study of proplyd-like objects (also known as free-floating Evapo rating Gas Globules or frEGGs) that typically show an extended cometary morphology. We identify eight objects previously studied at other wavelengths and derive their physical properties by obtaining their optical depth at radio-wavelengths. Using their geometry and the photoionization rate needed to produce their radio-continuum emission, we find that these sources are possibly ionized by a contribution of the stars Cyg OB2 #9 and Cyg OB2 #22. Spectral index maps of the eight frEGGs were constructed, showing a flat spectrum in radio frequencies in general. We interpret these as produced by optically-thin ionized gas, although it is possible that a combination of thermal emission, not necessarily optically thin, produced by a diffuse gas component and the instrument response (which detects more diffuse emission at low frequencies) can artificially generate negative spectral indices. In particular, for the case of the Tadpole we suggest that the observed emission is not of non-thermal origin despite the presence of regions with negative spectral indices in our maps.
Several interstellar environments produce anomalous microwave emission, with brightness-peaks at tens-of-gigahertz frequencies. The emissions origins are uncertain - rapidly-spinning nano-particles could emit electric-dipole radiation, but polycyclic aromatic hydrocarbons proposed as the carrier are now found not to correlate with Galactic signals. The difficulty is to identify co-spatial sources over long lines of sight. Here we identify anomalous microwave emission in three proto-planetary discs. These are the only known systems that host hydrogenated nano-diamonds, in contrast to very common detection of polycyclic aromatic hydrocarbons. Spectroscopy locates the nano-diamonds close to the host-stars, at physically-constrained temperatures. Developing disc models, we reproduce the emission with diamonds 0.75-1.1 nanometres in radius, holding less than or equal to 1-2 per cent of the carbon budget. The microwave-emission:stellar-luminosity ratios are approximately constant, allowing nano-diamonds to be ubiquitous but emitting below detection thresholds in many star-systems. This can unify the findings with similar-sized diamonds found within solar system meteorites. As nano-diamond spectral absorption is seen in interstellar sightlines, these particles are also a candidate for generating galaxy-scale anomalous microwave emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا