ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic X-ray Surveys of Distant Active Galaxies: The Demographics, Physics, and Ecology of Growing Supermassive Black Holes

72   0   0.0 ( 0 )
 نشر من قبل Niel Brandt
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W.N. Brandt




اسأل ChatGPT حول البحث

We review results from cosmic X-ray surveys of active galactic nuclei (AGNs) over the past ~ 15 yr that have dramatically improved our understanding of growing supermassive black holes in the distant universe. First, we discuss the utility of such surveys for AGN investigations and the capabilities of the missions making these surveys, emphasizing Chandra, XMM-Newton, and NuSTAR. Second, we briefly describe the main cosmic X-ray surveys, the essential roles of complementary multiwavelength data, and how AGNs are selected from these surveys. We then review key results from these surveys on the AGN population and its evolution (demographics), the physical processes operating in AGNs (physics), and the interactions between AGNs and their environments (ecology). We conclude by describing some significant unresolved questions and prospects for advancing the field.

قيم البحث

اقرأ أيضاً

70 - W.N. Brandt 2010
Extragalactic X-ray surveys over the past decade have dramatically improved understanding of the majority populations of active galactic nuclei (AGNs) over most of the history of the Universe. Here we briefly highlight some of the exciting discoverie s about AGN demography, physics, and ecology with a focus on results from Chandra. We also discuss some key unresolved questions and future prospects.
106 - D. M. Alexander 2016
We briefly review the synergy between X-ray and infrared observations for Active Galactic Nuclei (AGNs) detected in cosmic X-ray surveys, primarily with XMM-Newton, Chandra, and NuSTAR. We focus on two complementary aspects of this X-ray-infrared syn ergy (1) the identification of the most heavily obscured AGNs and (2) the connection between star formation and AGN activity. We also briefly discuss future prospects for X-ray-infrared studies over the next decade.
We investigate the evolution of supermassive binary black holes (BBHs) in galaxies with realistic property distributions and the gravitational-wave (GW) radiation from the cosmic population of these BBHs. We incorporate a comprehensive treatment of t he dynamical interactions of the BBHs with their environments by including the effects of galaxy triaxial shapes and inner stellar distributions, and generate a large number of BBH evolution tracks. By combining these BBH evolution tracks, galaxy mass functions, galaxy merger rates, and supermassive black hole-host galaxy relations into our model, we obtain the statistical distributions of surviving BBHs, BBH coalescence rates, the strength of their GW radiation, and the stochastic GW background (GWB) contributed by the cosmic BBH population. About ~1%-3% (or ~10%) of supermassive BHs at nearby galactic centers are expected to be binaries with mass ratio >1/3 (or >1/100). The characteristic strain amplitude of the GWB at frequency 1/yr is estimated to be ~$2.0^{+1.4}_{-0.8}times 10^{-16}$, and the upper bound of its results obtained with the different BH-host galaxy relations can be up to $5.4times 10^{-16}$, which await testing by future experiments (e.g., the Square Kilometer Array, FAST, Next-Generation Very Large Array). The turnover frequency of the GWB spectrum is at ~0.25nHz. The uncertainties on the above estimates and prospects for detecting individual sources are also discussed. The application of the cosmic BBH population to the Laser Interferometer Space Antenna (LISA) band provides a lower limit to the detection rate of BBHs by LISA, ~0.9/yr.
We study the disk-jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS-DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4~GHz and SDSS optical spectrum. Using this radio-loud quasar sample, we investigate the correlation among the jet power ($P_{rm jet}$), the bolometric disk luminosity ($L_{rm disk}$), and the black hole mass ($M_{rm BH}$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $log P_{rm jet} = (0.96pm0.012)log L_{rm disk} + (0.79 pm 0.55)$. This suggests that the jet production efficiency of $eta_{rm jet}simeq1.1_{-0.76}^{+2.6}times10^{-2}$ assuming the disk radiative efficiency of $0.1$ implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to dependence of the efficiency on geometrical thickness of the accretion flow which is expected to be small for quasars accreting at the disk Eddington ratios $0.01 lesssim lambda lesssim 0.3$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency of 0.3. We also investigate the fundamental plane in our samples among $P_{rm jet}$, $L_{rm disk}$, and $M_{rm BH}$. We could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.
We carry out a comprehensive Bayesian correlation analysis between hot halos and direct masses of supermassive black holes (SMBHs), by retrieving the X-ray plasma properties (temperature, luminosity, density, pressure, masses) over galactic to cluste r scales for 85 diverse systems. We find new key scalings, with the tightest relation being the $M_bullet-T_{rm x}$, followed by $M_bullet-L_{rm x}$. The tighter scatter (down to 0.2 dex) and stronger correlation coefficient of all the X-ray halo scalings compared with the optical counterparts (as the $M_bullet-sigma_{rm e}$) suggest that plasma halos play a more central role than stars in tracing and growing SMBHs (especially those that are ultramassive). Moreover, $M_bullet$ correlates better with the gas mass than dark matter mass. We show the important role of the environment, morphology, and relic galaxies/coronae, as well as the main departures from virialization/self-similarity via the optical/X-ray fundamental planes. We test the three major channels for SMBH growth: hot/Bondi-like models have inconsistent anti-correlation with X-ray halos and too low feeding; cosmological simulations find SMBH mergers as sub-dominant over most of the cosmic time and too rare to induce a central-limit-theorem effect; the scalings are consistent with chaotic cold accretion (CCA), the rain of matter condensing out of the turbulent X-ray halos that sustains a long-term self-regulated feedback loop. The new correlations are major observational constraints for models of SMBH feeding/feedback in galaxies, groups, and clusters (e.g., to test cosmological hydrodynamical simulations), and enable the study of SMBHs not only through X-rays, but also via the Sunyaev-Zeldovich effect (Compton parameter), lensing (total masses), and cosmology (gas fractions).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا