ترغب بنشر مسار تعليمي؟ اضغط هنا

How to bend galaxy disc profiles: the role of halo spin

83   0   0.0 ( 0 )
 نشر من قبل Jakob Herpich
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jakob Herpich




اسأل ChatGPT حول البحث

The radial density profiles of stellar galaxy discs can be well approximated as an exponential. Compared to this canonical form, however, the profiles in the majority of disc galaxies show downward or upward breaks at large radii. Currently, there is no coherent explanation in a galaxy formation context of the radial profile per se, along with the two types of profile breaks. Using a set of controlled hydrodynamic simulations of disc galaxy formation, we find a correlation between the host halos initial angular momentum and the resulting radial profile of the stellar disc: galaxies that live in haloes with a low spin parameter {lambda} <~ 0.03 show an up-bending break in their disc density profiles, while galaxies in haloes of higher angular momentum show a down-bending break. We find that the case of pure exponential profiles ({lambda} ~ 0.035) coincides with the peak of the spin parameter distribution from cosmological simulations. Our simulations not only imply an explanation of the observed behaviours, but also suggest that the physical origin of this effect is related to the amount of radial redistribution of stellar mass, which is anti-correlated with {lambda}.



قيم البحث

اقرأ أيضاً

163 - Jakob Herpich 2015
The radial profiles of stars in disc galaxies are observed to be either purely exponential (Type-I), truncated (Type-II) or anti-truncated (Type-III) exponentials. Controlled formation simulations of isolated galaxies can reproduce all of these profi le types by varying a single parameter, the initial halo spin. In this paper we examine these simulations in more detail in an effort to identify the physical mechanism that leads to the formation of Type-III profiles. The stars in the anti-truncated outskirts of such discs are now on eccentric orbits, but were born on near-circular orbits at much smaller radii. We show that, and explain how, they were driven to the outskirts via non-linear interactions with a strong and long-lived central bar, which greatly boosted their semi-major axis but also their eccentricity. While bars have been known to cause radial heating and outward migration to stellar orbits, we link this effect to the formation of Type-III profiles. This predicts that the anti-truncated parts of galaxies have unusual kinematics for disc-like stellar configurations: high radial velocity dispersions and slow net rotation. Whether such discs exist in nature, can be tested by future observations.
Within a cosmological hydrodynamical simulation, we form a disc galaxy with sub- components which can be assigned to a thin stellar disc, thick disk, and a low mass stellar halo via a chemical decomposition. The thin and thick disc populations so sel ected are distinct in their ages, kinematics, and metallicities. Thin disc stars are young (<6.6 Gyr), possess low velocity dispersion ({sigma}U,V,W = 41, 31, 25 km/s), high [Fe/H], and low [O/Fe]. The thick disc stars are old (6.6<age<9.8 Gyrs), lag the thin disc by sim21 km/s, possess higher velocity dispersion ({sigma}U,V,W = 49, 44, 35 km/s), relatively low [Fe/H] and high [O/Fe]. The halo component comprises less than 4% of stars in the solar annulus of the simulation, has low metallicity, a velocity ellipsoid defined by ({sigma}U,V,W = 62, 46, 45 km/s) and is formed primarily in-situ during an early merger epoch. Gas-rich mergers during this epoch play a major role in fuelling the formation of the old disc stars (the thick disc). This is consistent with studies which show that cold accretion is the main source of a disc galaxys baryons. Our simulation initially forms a relatively short (scalelength sim1.7 kpc at z=1) and kinematically hot disc, primarily from gas accreted during the galaxys merger epoch. Far from being a competing formation scenario, migration is crucial for reconciling the short, hot, discs which form at high redshift in {Lambda}CDM, with the properties of the thick disc at z=0. The thick disc, as defined by its abundances maintains its relatively short scale-length at z = 0 (2.31 kpc) compared with the total disc scale-length of 2.73 kpc. The inside-out nature of disc growth is imprinted the evolution of abundances such that the metal poor {alpha}-young population has a larger scale-length (4.07 kpc) than the more chemically evolved metal rich {alpha}-young population (2.74 kpc).
Aims: The physics driving features such as breaks observed in galaxy surface brightness (SB) profiles remains contentious. Here, we assess the importance of stellar radial motions in shaping their characteristics. Methods: We use the simulated Milky Way-mass, cosmological discs, from the Ramses Disc Environment Study (RaDES) to characterise the radial redistribution of stars in galaxies displaying type I (pure exponentials), II (downbending), and III (upbending) SB profiles. We compare radial profiles of the mass fractions and the velocity dispersions of different sub-populations of stars according to their birth and current locations. Results: Radial redistribution of stars is important in all galaxies regardless of their light profiles. Type II breaks seem to be a consequence of the combined effects of outward-moving and accreted stars. The former produces shallower inner profiles (lack of stars in the inner disc) and accumulate material around the break radius and beyond, strengthening the break; the latter can weaken or even convert the break into a pure exponential. Further accretion from satellites can concentrate material in the outermost parts, leading to type III breaks that can coexist with type II breaks, but situated further out. Type III galaxies would be the result of an important radial redistribution of material throughout the entire disc, as well as a concentration of accreted material in the outskirts. In addition, type III galaxies display the most efficient radial redistribution and the largest number of accreted stars, followed by type I and II systems, suggesting that type I galaxies may be an intermediate case between types II and III. In general, the velocity dispersion profiles of all galaxies tend to flatten or even ncrease around the locations where the breaks are found. The age and metallicity profiles are also affected, exhibiting...[abridged]
Galaxy scaling laws, such as the Tully-Fisher, mass-size and Fall relations, can provide extremely useful clues on our understanding of galaxy formation in a cosmological context. Some of these relations are extremely tight and well described by one single parameter (mass), despite the theoretical existence of secondary parameters such as spin and concentration, which are believed to impact these relations. In fact, the residuals of these scaling laws appear to be almost uncorrelated with each other, posing significant constraints on models where secondary parameters play an important role. Here, we show that a possible solution is that such secondary parameters are correlated amongst themselves, in a way that removes correlations in observable space. In particular, we focus on how the existence of an anti-correlation between the dark matter halo spin and its concentration -- which is still debated in simulations -- can weaken the correlation of the residuals of the Tully-Fisher and mass-size relations. Interestingly, using simple analytic galaxy formation models, we find that this happens only for a relatively small portion of the parameter space that we explored, which suggests that this idea could be used to derive constraints to galaxy formation models that are still unexplored.
219 - S. M. Croom 2021
We use comparisons between the SAMI Galaxy Survey and equilibrium galaxy models to infer the importance of disc fading in the transition of spirals into lenticular (S0) galaxies. The local S0 population has both higher photometric concentration and l ower stellar spin than spiral galaxies of comparable mass and we test whether this separation can be accounted for by passive aging alone. We construct a suite of dynamically self--consistent galaxy models, with a bulge, disc and halo using the GalactICS code. The dispersion-dominated bulge is given a uniformly old stellar population, while the disc is given a current star formation rate putting it on the main sequence, followed by sudden instantaneous quenching. We then generate mock observables (r-band images, stellar velocity and dispersion maps) as a function of time since quenching for a range of bulge/total (B/T) mass ratios. The disc fading leads to a decline in measured spin as the bulge contribution becomes more dominant, and also leads to increased concentration. However, the quantitative changes observed after 5 Gyr of disc fading cannot account for all of the observed difference. We see similar results if we instead subdivide our SAMI Galaxy Survey sample by star formation (relative to the main sequence). We use EAGLE simulations to also take into account progenitor bias, using size evolution to infer quenching time. The EAGLE simulations suggest that the progenitors of current passive galaxies typically have slightly higher spin than present day star-forming disc galaxies of the same mass. As a result, progenitor bias moves the data further from the disc fading model scenario, implying that intrinsic dynamical evolution must be important in the transition from star-forming discs to passive discs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا