ترغب بنشر مسار تعليمي؟ اضغط هنا

Volumes of strata of moduli spaces of quadratic differentials: getting explicit values

137   0   0.0 ( 0 )
 نشر من قبل Elise Goujard
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Elise Goujard




اسأل ChatGPT حول البحث

The volumes of strata of Abelian or quadratic differentials play an important role in the study of dynamics on flat surfaces, related to dynamics in polygonal billiards. This article reviews all known ways to compute volumes in the quadratic case and provides explicit values of volumes of the strata of meromorphic quadratic differentials with at most simple poles in all low dimensions.



قيم البحث

اقرأ أيضاً

179 - Elise Goujard 2014
We present an explicit formula relating volumes of strata of meromorphicquadratic differentials with at most simple poles on Riemann surfacesand counting functions of the number of flat cylinders filled by closedgeodesics in associated flat metric wi th singularities. This generalizes the resultof Athreya, Eskin and Zorich in genus 0 to higher genera.
161 - Alex Eskin , Anton Zorich 2015
We state conjectures on the asymptotic behavior of the volumes of moduli spaces of Abelian differentials and their Siegel-Veech constants as genus tends to infinity. We provide certain numerical evidence, describe recent advances and the state of the art towards proving these conjectures.
Let S be a closed topological surface. Haupts theorem provides necessary and sufficient conditions for a complex-valued character of the first integer homology group of S to be realized by integration against a complex-valued 1-form that is holomorph ic with respect to some complex structure on S. We prove a refinement of this theorem that takes into account the divisor data of the 1-form.
A $k$-differential on a Riemann surface is a section of the $k$-th power of the canonical bundle. Loci of $k$-differentials with prescribed number and multiplicities of zeros and poles form a natural stratification for the moduli space of $k$-differe ntials. The classification of connected components of the strata of $k$-differentials was known for holomorphic differentials, meromorphic differentials and quadratic differentials with at worst simple poles by Kontsevich--Zorich, Boissy and Lanneau, respectively. Built on their work we develop new techniques to study connected components of the strata of $k$-differentials for general $k$. As an application, we give a complete classification of connected components of the strata of quadratic differentials with arbitrary poles. Moreover, we distinguish certain components of the strata of $k$-differentials by generalizing the hyperelliptic structure and spin parity for higher $k$. We also describe an approach to determine explicitly parities of $k$-differentials in genus zero and one, which inspires an amusing conjecture in number theory. A key viewpoint we use is the notion of multi-scale $k$-differentials introduced by Bainbridge--Chen--Gendron--Grushevsky--Moller for $k = 1$ and extended by Costantini--Moller--Zachhuber for all $k$.
A $k$-differential on a Riemann surface is a section of the $k$-th power of the canonical line bundle. Loci of $k$-differentials with prescribed number and multiplicities of zeros and poles form a natural stratification of the moduli space of $k$-dif ferentials. In this paper we give a complete description for the compactification of the strata of $k$-differentials in terms of pointed stable $k$-differentials, for all $k$. The upshot is a global $k$-residue condition that can also be reformulated in terms of admissible covers of stable curves. Moreover, we study properties of $k$-differentials regarding their deformations, residues, and flat geometric structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا