ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-photon lasing by a superconducting qubit

162   0   0.0 ( 0 )
 نشر من قبل Pavol Neilinger
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the response of a magnetic-field-driven superconducting qubit strongly coupled to a superconducting coplanar waveguide resonator. We observed a strong amplification/damping of a probing signal at different resonance points corresponding to a one and two-photon emission/absorption. The sign of the detuning between the qubit frequency and the probe determines whether amplification or damping is observed. The larger blue detuned driving leads to two-photon lasing while the larger red detuning cools the resonator. Our experimental results are in good agreement with the theoretical model of qubit lasing and cooling at the Rabi frequency.



قيم البحث

اقرأ أيضاً

Quantum state detectors based on switching of hysteretic Josephson junctions biased close to their critical current are simple to use but have strong back-action. We show that the back-action of a DC-switching detector can be considerably reduced by limiting the switching voltage and using a fast cryogenic amplifier, such that a single readout can be completed within 25 ns at a repetition rate of 1 MHz without loss of contrast. Based on a sequence of two successive readouts we show that the measurement has a clear quantum non-demolition character, with a QND fidelity of 75 %.
Instantons, spacetime-localized quantum field tunneling events, are ubiquitous in correlated condensed matter and high energy systems. However, their direct observation through collisions with conventional particles has not been considered possible. We show how recent advances in circuit quantum electrodynamics, specifically, the realization of galvanic coupling of a transmon qubit to a high-impedance transmission line, allows the observation of inelastic collisions of single microwave photons with instantons (phase slips). We develop a formalism for calculating the photon-instanton cross section, which should be useful in other quantum field theoretical contexts. In particular, we show that the inelastic scattering probability can significantly exceed the effect of conventional Josephson quartic anharmonicity, and reach order-unity values.
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74% which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.
Spontaneous decay of a single photon is a notoriously inefficient process in nature irrespective of the frequency range. We report that a quantum phase-slip fluctuation in high-impedance superconducting waveguides can split a single incident microwav e photon into a large number of lower-energy photons with a near unit probability. The underlying inelastic photon-photon interaction has no analogs in non-linear optics. Instead, the measured decay rates are explained without adjustable parameters in the framework of a new model of a quantum impurity in a Luttinger liquid. Our result connects circuit quantum electrodynamics to critical phenomena in two-dimensional boundary quantum field theories, important in the physics of strongly-correlated systems. The photon lifetime data represents a rare example of verified and useful quantum many-body simulation.
80 - A. Lupascu , S. Saito , T. Picot 2006
In quantum mechanics, the process of measurement is a subtle interplay between extraction of information and disturbance of the state of the quantum system. A quantum non-demolition (QND) measurement minimizes this disturbance by using a particular s ystem - detector interaction which preserves the eigenstates of a suitable operator of the quantum system. This leads to an ideal projective measurement. We present experiments in which we perform two consecutive measurements on a quantum two -level system, a superconducting flux qubit, by probing the hysteretic behaviour of a coupled nonlinear resonator. The large correlation between the results of the two measurements demonstrates the QND nature of the readout method. The fact that a QND measurement is possible for superconducting qubits strengthens the notion that these fabricated mesoscopic systems are to be regarded as fundamental quantum objects. Our results are also relevant for quantum information processing, where projective measurements are used for protocols like state preparation and error correction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا