ﻻ يوجد ملخص باللغة العربية
We propose some multigrid methods for solving the algebraic systems resulting from finite element approximations of space fractional partial differential equations (SFPDEs). It is shown that our multigrid methods are optimal, which means the convergence rates of the methods are independent of the mesh size and mesh level. Moreover, our theoretical analysis and convergence results do not require regularity assumptions of the model problems. Numerical results are given to support our theoretical findings.
In this paper, a two-level additive Schwarz preconditioner is proposed for solving the algebraic systems resulting from the finite element approximations of space fractional partial differential equations (SFPDEs). It is shown that the condition numb
This article aims to develop a direct numerical approach to solve the space-fractional partial differential equations (PDEs) based on a new differential quadrature (DQ) technique. The fractional derivatives are approximated by the weighted linear com
The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential
In this paper, we propose third-order semi-discretized schemes in space based on the tempered weighted and shifted Grunwald difference (tempered-WSGD) operators for the tempered fractional diffusion equation. We also show stability and convergence an
In recent years, sparse spectral methods for solving partial differential equations have been derived using hierarchies of classical orthogonal polynomials on intervals, disks, disk-slices and triangles. In this work we extend the methodology to a hi