ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Neutral Hydrogen and Galaxy Evolution with the SKA

136   0   0.0 ( 0 )
 نشر من قبل M. A. W. Verheijen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the key science drivers for the development of the SKA is to observe the neutral hydrogen, HI, in galaxies as a means to probe galaxy evolution across a range of environments over cosmic time. Over the past decade, much progress has been made in theoretical simulations and observations of HI in galaxies. However, recent HI surveys on both single dish radio telescopes and interferometers, while providing detailed information on global HI properties, the dark matter distribution in galaxies, as well as insight into the relationship between star formation and the interstellar medium, have been limited to the local universe. Ongoing and upcoming HI surveys on SKA pathfinder instruments will extend these measurements beyond the local universe to intermediate redshifts with long observing programmes. We present here an overview of the HI science which will be possible with the increased capabilities of the SKA and which will build upon the expected increase in knowledge of HI in and around galaxies obtained with the SKA pathfinder surveys. With the SKA1 the greatest improvement over our current measurements is the capability to image galaxies at reasonable linear resolution and good column density sensitivity to much higher redshifts (0.2 < z < 1.7). So one will not only be able to increase the number of detections to study the evolution of the HI mass function, but also have the sensitivity and resolution to study inflows and outflows to and from galaxies and the kinematics of the gas within and around galaxies as a function of environment and cosmic time out to previously unexplored depths. The increased sensitivity of SKA2 will allow us to image Milky Way-size galaxies out to redshifts of z=1 and will provide the data required for a comprehensive picture of the HI content of galaxies back to z~2 when the cosmic star formation rate density was at its peak.



قيم البحث

اقرأ أيضاً

We present new KAT-7 observations of the neutral hydrogen (HI) spectral line, and polarized radio continuum emission, in the grand design spiral M83. These observations provide a sensitive probe of the outer disk structure and kinematics, revealing a vast and massive neutral gas distribution that appears to be tightly coupled to the interaction of the galaxy with the environment. We present a new rotation curve extending out to a radius of 50 kpc. Based on our new HI dataset and comparison with multiwavelength data from the literature we consider the impact of mergers on the outer disk and discuss the evolution of M83. We also study the periphery of the HI distribution and reveal a sharp edge to the gaseous disk that is consistent with photoionization or ram pressure from the intergalactic medium (IGM). The radio continuum emission is not nearly as extended as the HI and is restricted to the main optical disk. Despite the relatively low angular resolution we are able to draw broad conclusions about the large-scale magnetic field topology. We show that the magnetic field of M83 is similar in form to other nearby star forming galaxies, and suggest that the disk-halo interface may host a large-scale regular magnetic field.
Context. Generative models open up the possibility to interrogate scientific data in a more data-driven way. Aims: We propose a method that uses generative models to explore hypotheses in astrophysics and other areas. We use a neural network to show how we can independently manipulate physical attributes by encoding objects in latent space. Methods: By learning a latent space representation of the data, we can use this network to forward model and explore hypotheses in a data-driven way. We train a neural network to generate artificial data to test hypotheses for the underlying physical processes. Results: We demonstrate this process using a well-studied process in astrophysics, the quenching of star formation in galaxies as they move from low-to high-density environments. This approach can help explore astrophysical and other phenomena in a way that is different from current methods based on simulations and observations.
As we strive to understand how galaxies evolve it is crucial that we resolve physical processes and test emerging theories in nearby systems that we can observe in great detail. Our own Galaxy, the Milky Way, and the nearby Magellanic Clouds provide unique windows into the evolution of galaxies, each with its own metallicity and star formation rate. These laboratories allow us to study with more detail than anywhere else in the Universe how galaxies acquire fresh gas to fuel their continuing star formation, how they exchange gas with the surrounding intergalactic medium, and turn warm, diffuse gas into molecular clouds and ultimately stars. The $lambda$21-cm line of atomic hydrogen (HI) is an excellent tracer of these physical processes. With the SKA we will finally have the combination of surface brightness sensitivity, point source sensitivity and angular resolution to transform our understanding of the evolution of gas in the Milky Way, all the way from the halo down to the formation of individual molecular clouds.
Formation and evolution of galaxies have been a central driving force in the studies of galaxies and cosmology. Recent studies provided a global picture of cosmic star formation history. However, what drives the evolution of star formation activities in galaxies has long been a matter of debate. The key factor of the star formation is the transition of hydrogen from atomic to molecular state, since the star formation is associated with the molecular phase. This transition is also strongly coupled with chemical evolution, because dust grains, i.e., tiny solid particles of heavy elements, play a critical role in molecular formation. Therefore, a comprehensive understanding of neutral-molecular gas transition, star formation and chemical enrichment is necessary to clarify the galaxy formation and evolution. Here we present the activity of SKA-JP galaxy evolution sub-science working group (subSWG) Our activity is focused on three epochs: z sim 0, 1, and z > 3. At z sim 0, we try to construct a unified picture of atomic and molecular hydrogen through nearby galaxies in terms of metallicity and other various ISM properties. Up to intermediate redshifts z sim 1, we explore scaling relations including gas and star formation properties, like the main sequence and the Kennicutt-Schmidt law of star forming galaxies. To connect the global studies with spatially-resolved investigations, such relations will be plausibly a viable way. For high redshift objects, the absorption lines of HI 21-cm line will be a very promising observable to explore the properties of gas in galaxies. By these studies, we will surely witness a real revolution in the studies of galaxies by SKA.
We combine high resolution N-body simulations with deep observations of neutral hydrogen (HI) in nearby galaxy groups in order to explore two well-known theories of HI cloud formation: HI stripping by galaxy interactions and dark matter minihalos wit h embedded HI gas. This paper presents new data from three galaxy groups, Canes Venatici I, NGC 672, and NGC 45, and assembles data from our previous galaxy group campaign to generate a rich HI cloud archive to compare to our simulated data. We find no HI clouds in the Canes Venatici I, NGC 672, or NGC 45 galaxy groups. We conclude that HI clouds in our detection space are most likely to be generated through recent, strong galaxy interactions. We find no evidence of HI clouds associated with dark matter halos above M_HI = 10^6 M_Sun, within +/- 700 km/s of galaxies, and within 50 kpc projected distance of galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا