ترغب بنشر مسار تعليمي؟ اضغط هنا

Survey Simulations of a New Near-Earth Asteroid Detection System

116   0   0.0 ( 0 )
 نشر من قبل A. Mainzer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth-Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes >=140 m in effective spherical diameter were simulated using recent determinations of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of new large-format 10 um detector arrays capable of operating at ~35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer and WISE data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth-Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next-generation NEA survey.



قيم البحث

اقرأ أيضاً

We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 {mu}m) of the Infrared Array Camera and detected the target within the 2{sigma} positional uncertain ty ellipse. Using an asteroid thermophysical model and a model of nongravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. We estimate 2011 MD to be 6 (+4/-2) m in diameter with a geometric albedo of 0.3 (+0.4/-0.2) (uncertainties are 1{sigma}). We find the asteroids most probable bulk density to be 1.1 (+0.7/-0.5) g cm^{-3}, which implies a total mass of (50-350) t and a macroporosity of >=65%, assuming a material bulk density typical of non-primitive meteorite materials. A high degree of macroporosity suggests 2011 MD to be a rubble-pile asteroid, the rotation of which is more likely to be retrograde than prograde.
We conducted a polarimetric observation of the fast-rotating near-Earth asteroid (1566) Icarus at large phase (Sun-asteroid-observers) angles $alpha$= 57 deg--141deg around the 2015 summer solstice. We found that the maximum values of the linear pola rization degree are $P_mathrm{max}$=7.32$pm$0.25 % at phase angles of $alpha_mathrm{max}$=124$pm$8 deg in the $V$-band and $P_mathrm{max}$=7.04$pm$0.21 % at $alpha_mathrm{max}$=124$pm$6 deg in the $R_mathrm{C}$-band. Applying the polarimetric slope-albedo empirical law, we derived a geometric albedo of $p_mathrm{V}$=0.25$pm$0.02, which is in agreement with that of Q-type taxonomic asteroids. $alpha_mathrm{max}$ is unambiguously larger than that of Mercury, the Moon, and another near-Earth S-type asteroid (4179) Toutatis but consistent with laboratory samples with hundreds of microns in size. The combination of the maximum polarization degree and the geometric albedo is in accordance with terrestrial rocks with a diameter of several hundreds of micrometers. The photometric function indicates a large macroscopic roughness. We hypothesize that the unique environment (i.e., the small perihelion distance $q$=0.187 au and a short rotational period of $T_mathrm{rot}$=2.27 hours) may be attributed to the paucity of small grains on the surface, as indicated on (3200) Phaethon.
As astronomical photometric surveys continue to tile the sky repeatedly, the potential to pushdetection thresholds to fainter limits increases; however, traditional digital-tracking methods cannotachieve this efficiently beyond time scales where moti on is approximately linear. In this paper weprototype an optimal detection scheme that samples under a user defined prior on a parameterizationof the motion space, maps these sampled trajectories to the data space, and computes an optimalsignal-matched filter for computing the signal to noise ratio of trial trajectories. We demonstrate thecapability of this method on a small test data set from the Dark Energy Camera. We recover themajority of asteroids expected to appear and also discover hundreds of new asteroids with only a fewhours of observations. We conclude by exploring the potential for extending this scheme to larger datasets that cover larger areas of the sky over longer time baselines.
We have used Minor Planet Center data and tools to explore the discovery circumstances and properties of the currently known population of over 10,000 NEAs, and to quantify the challenges for follow-up from ground-based telescopes. The increasing rat e of discovery has grown to ~1,000/year as surveys have become more sensitive, by 1mag every ~7.5 years. However, discoveries of large (H =< 22) NEAs have remained stable at ~365/year over the past decade, at which rate the 2005 Congressional mandate to find 90% of 140m NEAs will not be met before 2030. Meanwhile, characterization is falling farther behind: Fewer than 10% of NEAs are well characterized in terms of size, rotation periods, and spectra, and at current rates of follow-up it will take about a century to determine them even for the known population. Over 60% of NEAs have an orbital uncertainty parameter, U >= 4, making reacquisition more than a year following discovery difficult; for H > 22 this fraction is over 90%. We argue that rapid follow-up will be essential to characterize newly-discovered NEAs. Most new NEAs are found within 0.5mag of peak brightness and fade quickly, typically by 0.5/3.5/5mag after 1/4/6 weeks. About 80% have synodic periods of <3 years that bring them close to Earth several times a decade. However, follow-up observations on subsequent apparitions will be near impossible for the bulk of new discoveries, as these will be H > 22 NEAs that tend to return 100 times fainter. We show that for characterization to keep pace with discovery would require: Visible spectroscopy within days with a dedicated >2m telescope; long-arc astrometry, used also for phase curves, with a >4m telescope; and fast-cadence (<min) lightcurves obtained within days with a >= 4m telescope. For the already-known large (H =< 22) NEAs, subsequent-apparition spectroscopy, astrometry, and photometry could be done with 1-2m telescopes.
The Apollo-type near-Earth asteroid (155140) 2005 UD is thought to be a member of the Phaethon-Geminid meteor stream Complex (PGC). Its basic physical parameters are important for unveiling its origin and its relationship to the other PGC members as well as to the Geminid stream. Adopting the Lommel-Seeliger ellipsoid method and $H,G_1,G_2$ phase function, we carry out spin, shape, and phase curve inversion using the photometric data of 2005~UD. The data consists of 11 new lightcurves, 3 lightcurves downloaded from the Minor Planet Center, and 166 sparse data points downloaded from the Zwicky Transient Facility database. As a result, we derive the pole solution of ($285^circ.8^{+1.1}_{-5.3}$, $ -25^circ.8^{+5.3}_{-12.5}$) in the ecliptic frame of J2000.0 with the rotational period of $5.2340$ h. The corresponding triaxial shape (semiaxes $a>b>c$) is estimated as $b/a= 0.76^{+0.01}_{-0.01}$ and $c/a=0.40^{+0.03}_{-0.01}$. Using the calibrated photometric data of 2005 UD, the $H,G_1,G_2$ parameters are estimated as $17.19^{+0.10}_{-0.09}$ mag, $0.573^{+0.088}_{-0.069}$, and $0.004^{+0.020}_{-0.021}$, respectively. Correspondingly, the phase integral $q$, photometric phase coefficient $k$, and the enhancement factor $zeta$ are 0.2447, -1.9011, and 0.7344. From the values of $G_1$ and $G_2$, 2005 UD is likely to be a C-type asteroid. We estimate the equivalent diameter of 2005 UD from the new $H$-value: it is 1.30 km using the new geometric albedo of 0.14.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا