ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the ballistic-to-diffusive transition in nematode motility reveals variation in exploratory behavior across species

55   0   0.0 ( 0 )
 تاريخ النشر 2015
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantitative understanding of organism-level behavior requires predictive models that can capture the richness of behavioral phenotypes, yet are simple enough to connect with underlying mechanistic processes. Here we investigate the motile behavior of nematodes at the level of their translational motion on surfaces driven by undulatory propulsion. We broadly sample the nematode behavioral repertoire by measuring motile trajectories of the canonical lab strain $C. elegans$ N2 as well as wild strains and distant species. We focus on trajectory dynamics over timescales spanning the transition from ballistic (straight) to diffusive (random) movement and find that salient features of the motility statistics are captured by a random walk model with independent dynamics in the speed, bearing and reversal events. We show that the model parameters vary among species in a correlated, low-dimensional manner suggestive of a common mode of behavioral control and a trade-off between exploration and exploitation. The distribution of phenotypes along this primary mode of variation reveals that not only the mean but also the variance varies considerably across strains, suggesting that these nematode lineages employ contrasting ``bet-hedging strategies for foraging.



قيم البحث

اقرأ أيضاً

We study the effects of the long-range disorder potential and warping on the conductivity and mobility of graphene ribbons using the Landauer formalism and the tight-binding p-orbital Hamiltonian. We demonstrate that as the length of the structure in creases the system undergoes a transition from the ballistic to the diffusive regime. This is reflected in the calculated electron density dependencies of the conductivity and the mobility. In particular, we show that the mobility of graphene ribbons varies as mu(n) n^(-lambda), with 0<lambda<0.5. The exponent lambda depends on the length of the system with lambda=0.5 corresponding to short structures in the ballistic regime, whereas the diffusive regime lambda=0 (when the mobility is independent on the electron density) is reached for sufficiently long structures. Our results can be used for the interpretation of experimental data when the value of lambda can be used to distinguish the transport regime of the system (i.e. ballistic, quasi-ballistic or diffusive). Based on our findings we discuss available experimental results.
In lieu of an abstract here is the first paragraph: No other species remotely approaches the human capacity for the cultural evolution of novelty that is accumulative, adaptive, and open-ended (i.e., with no a priori limit on the size or scope of pos sibilities). By culture we mean extrasomatic adaptations--including behavior and technology--that are socially rather than sexually transmitted. This chapter synthesizes research from anthropology, psychology, archaeology, and agent-based modeling into a speculative yet coherent account of two fundamental cognitive transitions underlying human cultural evolution that is consistent with contemporary psychology. While the chapter overlaps with a more technical paper on this topic (Gabora & Smith 2018), it incorporates new research and elaborates a genetic component to our overall argument. The ideas in this chapter grew out of a non-Darwinian framework for cultural evolution, referred to as the Self-other Reorganization (SOR) theory of cultural evolution (Gabora, 2013, in press; Smith, 2013), which was inspired by research on the origin and earliest stage in the evolution of life (Cornish-Bowden & Cardenas 2017; Goldenfeld, Biancalani, & Jafarpour, 2017, Vetsigian, Woese, & Goldenfeld 2006; Woese, 2002). SOR bridges psychological research on fundamental aspects of our human nature such as creativity and our proclivity to reflect on ideas from different perspectives, with the literature on evolutionary approaches to cultural evolution that aspire to synthesize the behavioral sciences much as has been done for the biological scientists. The current chapter is complementary to this effort, but less abstract; it attempts to ground the theory of cultural evolution in terms of cognitive transitions as suggested by archaeological evidence.
The connectome, or the entire connectivity of a neural system represented by network, ranges various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly s how has been extensively studied, it is unclear whether connection specificity of such networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the neuronal network of C. elegans and the fibre tract network of human brains yielded through diffusion spectrum imaging (DSI). We compare them to their respective benchmark networks with varying modularities, which are generated by link swapping to have desired modularity values but otherwise maximally random. We find several network properties that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering coefficient and the characteristic path length of C. elegans and human connectomes are both higher than those of the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information distribution and high characteristic path length suggests reduced global integration. Second, the total wiring length is smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections, which means each neuron in C. elegans connectome or each region of interest (ROI) in human connectome reaches fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared to the alternative arrangements. This implies that fewer rules are needed to encode for the organisation of neural systems.
Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is possible to follow the relative abundance of microbes in a community over time. These microbial communit ies exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the interactions between species from sequence data. Any algorithm for inferring species interactions must overcome three obstacles: 1) a correlation between the abundances of two species does not imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions. Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct keystone species, Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in the human gut microbiome.
Personalized models of the gut microbiome are valuable for disease prevention and treatment. For this, one requires a mathematical model that predicts microbial community composition and the emergent behavior of microbial communities. We seek a model ing strategy that can capture emergent behavior when built from sets of universal individual interactions. Our investigation reveals that species-metabolite interaction modeling is better able to capture emergent behavior in community composition dynamics than direct species-species modeling. Using publicly available data, we examine the ability of species-species models and species-metabolite models to predict trio growth experiments from the outcomes of pair growth experiments. We compare quadratic species-species interaction models and quadratic species-metabolite interaction models, and conclude that only species-metabolite models have the necessary complexity to to explain a wide variety of interdependent growth outcomes. We also show that general species-species interaction models cannot match patterns observed in community growth dynamics, whereas species-metabolite models can. We conclude that species-metabolite modeling will be important in the development of accurate, clinically useful models of microbial communities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا